
On Quantitative Security Policies

Pierpaolo Degano, Gian-Luigi Ferrari, and Gianluca Mezzetti

Dipartimento di Informatica
Università di Pisa, Italy

{degano,giangi,mezzetti}@di.unipi.it

Abstract. We introduce a formal framework to specify and enforce
quantitative security policies. The framework consists of: (i) a stochas-
tic process calculus to express the measurable space of computations in
terms of Continuous Time Markov Chains; (ii) a stochastic modal logic
(a variant of CSL) to represent the bound constraints on execution speed;
(iii) two enforcement mechanisms of our quantitative security policies:
potential or actual. The potential enforcement computes the probabil-
ity of policy violations, thus providing a sort of static evaluation of the
policy. This supports the user to accept/discard a component when the
probability of the security violation is below/above a suitable chosen
threshold. The actual enforcement computes the deviation of the execu-
tion speed from the acceptable rate. This supports the run-time systems
by driving the execution monitor to abort unsafe executions.

Introduction

In the last few years a new trend is emerging that exploits the network for
computing in a different manner. Applications are no longer built as monolithic
entities, rather they are constructed by plugging together computational facili-
ties and resources offered by (possibly) untrusted providers. Illustrative examples
of this approach are the Service Oriented, GRID and CLOUD paradigms. Since
applications have not the full control of network facilities, security issues be-
came even more acute. The literature has several proposals that address these
problems. They can be roughly divided into dynamic, that monitor executions
possibly stopping them when unsecure; and static, that analyse at binding time
the published behavioural interfaces to avoid risky executions.

A language based approach supporting the static analysis of security has been
developed in [12,11,10,9]. Its main ingredients are: local policies, call-by-contract
invocation, type-effect systems, model checking and secure orchestration. How-
ever, this approach only takes into account qualitative aspects of behaviour,
neglecting quantitative ones, typically the rates at which the different activities
are performed. Indeed recently several quantitative models have been put for-
ward, among which PEPA[23], PRISM[25], Stochastic π-calculus [17,30], to cite
only a few.

In this paper we extend the approach of [10] to also deal with quantita-
tive aspects. Our starting point is the abstraction of behaviour, called history

2

expressions. Abstractions are processes of a suitable process calculus, and we as-
sociate a rate with its actions landing in the world of stochastic process calculi.
Our first goal is to give history expressions a quantitative semantics in terms
of continuous-time Markov chains (CTMC) so making usable well-known tech-
niques for quantitative analysis [8,26,18]. We use a variation of the stochastic
kernels over measurable spaces [15,29] to represent CTMC in the style of [17,16].
To overcome the difficulties with recursion, we restrict history expressions to a
disciplined iteration, namely binary Kleene star. The first result of this paper is
a CTMC semantics of our variant of history expressions, that turn out to be an
extension of BPA∗δ [22,7].

Our second main contribution is sharpening security policies with quantita-
tive constraints. Roughly, quantitative policies are safety properties that enforce
bounds on the speed at which actions have to be performed. These policies are
first class operators inside history expressions, so that security can be taken into
account from the very beginning of application development. To express policies
we consider a linear subset of CSL [8,4].

Because of the inherent stochasticity of our programming model, policies are
to be controlled in two complementary modalities: potential or actual. The first
one applies to CTMC semantics, hence the check is on the expected behaviour
— rates represent the average speed of actions. Potential analysis then measures
the probability of policy violations. This kind of verification can be carried out
through a probabilistic model checker [25].

The actual control can only be done dynamically, because in a specific, un-
likely computation, the actual speed of an action can greatly deviate from its
rate. Security is then enforced during the execution through an execution mon-
itor aborting such an unlikely, unsafe computation.

Potential verification enables a user to accept/discard an application when
the probability of a security violation is below/above a certain threshold he feels
acceptable. Complementary, actual monitoring will stop the unwanted execution,
so guaranteeing security.

1 Background

We review the main notions and notations about measure theory and we refer
the reader to [3,2] for more details.

Given the support set M 6= ∅, a σ-algebra Σ over M is a set of subsets of M ,
the measurable sets, containing ∅ and closed under complement and countable
union. The structureM = (M,Σ) is a measurable space and a measure over it
is a function κ : Σ → R+ ∪ {∞} such that:

1. κ (∅) = 0
2. Given a countable collection {Ni}i∈I of pairwise disjoint sets in Σ then:
κ (∪i∈INi) =

∑
i∈I κ (Ni) (σ-additivity)

The class of measures on a measurable spaceM will be denoted by ∆(M,Σ) or
∆(M) when the support set and the σ-algebra are clear from the context .

3

Given a class of sets G, called generator, σ(G) is the minimal σ-algebra
containing G. If G contains all pairwise disjoint sets then G is a base of σ(G).
Note that σ(G) always exists since ℘(G) contains G and the intersection of an
arbitrary collection of σ-algebras is a σ-algebra.

Given two measurable spaces (M1, Σ1), (M2, Σ2) a function f : M1 → M2

is measurable iff ∀A ∈ Σ2.f
−1(A) ∈ Σ1. The class ‖M1 → M2‖ contains the

measurable functions between (M1, Σ1) and (M2, Σ2) omitting Σ1, Σ2 when un-
ambiguous. A measurable function is structure-preserving.

Hereafter, whenever using a measurable space of measures κ ∈ ∆(M,Σ), we
will consider the σ-algebra generated by the sets {κ ∈ ∆(M,Σ) | κ(S) ≥ r} for
arbitrary S ∈ Σ, r > 0, .

Given an arbitrary set Ω 6= ∅, the sample space, a σ-algebra on it and a
measure P such that P(Ω) = 1, we can build a probability space (Ω,Π,P) so
interpreting standard probability theory in the measure theoretic context. For
instance P(A) is the “probability of the events in A” with A measurable, i.e.
A ∈ Π.

The random variables of probability theory can be defined and generalized in
measure theory. A random variable X is a measurable function between (Ω,Π)
and the measurable space formed by intervals in R. The measure P governs
the probability of X−1([a, b]). Given a comparison symbol C∈ {≤,≥, <,>}, we
abbreviate P(X−1({x | x C z})) with P(X C z).

A random variable of parameter λ has an exponential distribution if

P(X ≤ t) =

{
1− e−λt if t ≥ 0

0 otherwise

Only exponentially distributed random variables enjoy the memoryless property
P (X > s+ t | X > t) = P (X > s) for all s, t ≥ 0; they have mean 1

λ ; if {Xi}i∈I
is a finite set of such variables with parameter λi then M = min{Xi}i∈I is an
exponential random variable with parameter

∑
i∈I λi.

We now introduce Continuous-Time Markov chains on a countable state
space. We refer to [28,24,3,8] for details.

Definition 1.1. Let S be a denumerable set, a Continuous-Time Stochastic
Process is an indexed (by t ∈ R+) family of random variables X(t) : Ω → S
with (Ω,B,P) probability space.

The value of the variable Xt can be interpreted as the state of the process at
time t. A continuous-time system evolves performing transitions between states.
We limit ourself to specific class of processes with the Markov property.

Definition 1.2. A Continuous-Time Markov Chain (CTMC) is a stochastic
process X(t) with t ≥ 0 such that for any s, t ≥ 0 and i, j, xu ∈ S the Markov
property holds :

P (X(t+ s) = j | X(s) = i,X(u) = xu, 0 ≤ u < s) = P (X(t+ s) = j | X(s) = i)

4

The CTMC is said to have homogeneous transition probabilities if:

P(X(t+ s) = i | X(s) = j) = P(X(t) = i | X(0) = j)

Hereafter we will only use homogeneous CTMC.
Because of the Markov property, we denote with a random variable Lj , de-

pending only on the current state j, the sojourn time: the amount of time spent
in j before performing a new transition. Also we have that:

P (Li > s+ v | Li > s) = P (Li > v) memoryless property of Li

Hence, it turns out that Li must be exponentially distributed. When the process
leaves state i, it can reach another state with a certain probability. This prob-
ability does not depend on the time spent in i. Hence we will indicate with pij
the probability that the process reach state j from state i.

As a consequence, a CTMC is completely characterized by the parameters
λi of the exponentially distributed random variables Li and by pij . A well-know
representation of a CTMC is the rate-matrix R = [rij] with rij = pijλi.

This representation suggests another interpretation of the evolution of a
CTMC. Since the minimum of a set {Ci}i∈I of exponentially distributed random
variables with rate ci is again an exponentially distributed random variable with
rate

∑
i∈I ci, we can interpret Li as the minimum min{Rij} of a set of random

variables with rate rij . Hence, a CTMC models a process that, while entering
in state i, enables a set of action, whose durations is modelled by the random
variables {Rij}j∈S . These actions are competing (racing) for completion. If the
action with duration Rij is the faster, then the next state will be j.

Another common and useful characterization of CTMC is through the in-
finitesimal generator matrix Q, given in terms of the rate matrix:

Definition 1.3. Let D = [dij] be a matrix with dij = 0 if i 6= j and dii =∑
j∈S rij otherwise. Then the infinitesimal generator matrix is Q = R−D.

All previous definitions smoothly extend considering a function L : S × S → A
labelling transitions between states.

Let pij(t) = P(X(t) = j | X(0) = i) and P (t) = [pij(t)] its matrix represen-
tation, a steady distribution π is a vector such that π = πP (t) for all t ≥ 0. The
meaning is that if we use π as distribution of X(0) then this will remain the
same for all t > 0:

P(X(t) = j) =
∑
i∈S

P(X(t) = j | X(0) = i)·P(X(0) = i) =
∑
i∈S

pij(t)πi = [πP (t)]j = πj

It is well know that the infinitesimal generator matrix plays almost the same
role (in Continuous-Time) of the probability matrix of a Discrete-Time Markov
Chain finding a steady distribution:

Fact. Given a CTMC let Q be its infinitesimal generator matrix, then π is its
steady distribution iff πQ = 0 and

∑
i∈S πi = 1

5

Such π always exists for a finite CTMC and it is unique if the CTMC is irre-
ducible (if every state can be reached by a sequence of transitions from all other
states). A steady distribution is important because a CTMC will reach it “on
the long run” as shown by the following theorem:

Fact. Given a CTMC, if it has a steady distribution π, then ∀i : limt→∞ pij(t) =
πj

The notion of steady distribution is very important to analyse reliability
and performance of a system modelled as a CTMC. In fact, πj represents the
proportion of time spent in state j on the long run. This information can be
used to infer the typical behaviour of the system.

2 Stochastic history expressions

A language-based framework for managing security issues in a distributed con-
texts has been proposed in [12,11,10,9].

The starting point of these works is a functional programming language sup-
porting remote service invocation and the enforcing of security policies. The
execution of a distributed application comprise local and remote computations.
Security relevant events generated during the executions of the application are
collected in sequences, called histories. Security policies express constraints over
these histories. Enforcing security can be done statically and dynamically. The
dynamic mechanism uses a runtime monitor that blocks executions about to
violate a security requirement. The static one uses a formalism, called history
expressions, to represent all the histories that can be generated. These are then
model checked to verify whether the constraints will be always satisfied. Their
approach is qualitative only, here we present a first step towards a quantitative
extension.

We first extend histories into timed histories. A timed history is a possibly
empty sequence ((a, ta), (b, tb), . . .) of occurred events, with tx duration of event
x. Also security policies are extended to express timing constraints on timed
histories. The values tx are unpredictable on a single run of a program but we
assume these duration to be exponentially distributed.

Under this assumption, we extend history expressions and obtain stochastic
history expressions (HEµ). These express in a finite way potentially infinite
timed histories and enable us to model check quantitative policies using well-
known techniques. Indeed, the semantics of a HEµ process is given in terms of
a CTMC, that implicitly describes both the timed histories and the long run
behaviour of a program. It is convenient to use a functional representation of
CTMC called Markov kernel (see Definition 2.4).

2.1 Syntax

The building blocks of HEµ are stochastic events. Given an alphabet of event
names A, a stochastic event is a pair (a, α) ∈ A×Q+, where α is the rate of a,
i.e. the parameter of the exponential random variable modelling its duration.

6

Definition 2.1. A stochastic history expressions (HEµ) h ∈ H is a term gen-
erated by the following grammar:

h1, h2 ::= (a, α) (stochastic event) | δ (deadlock) |
ψ[e1] (policy framing) | h1 · h2 (sequentialization) |
h1 + h2 (stochastic choice) | (h1

∗ h2) (binary Kleene star)

A stochastic event (a, α) performs action a and then successfully terminates.
Deadlock δ is a non terminated process that cannot perform any action. The
stochastic choice operator + simultaneously enables two or more actions of pro-
cesses h1, h2. We consider the enabled actions as competing: this means that
the system is in a race condition and it hangs waiting for the fastest action to
occur, while discarding the slower ones. We also consider a disciplined form of
iteration: the binary Kleene star. It takes two processes and let them race. If
the left process wins then it executes and the race starts again, otherwise the
right executes and the iteration is over. We can express infinite behaviour as the
no-exit iteration (h1

∗ δ) [13] that describes a process continuously doing h1. For
an overview about expressiveness of iteration, recursion, replication and a com-
parison between unary and binary star in classical process algebras see [21,6].
The sequentialization operator is often present in stochastic process algebras in
its restricted variant of action prefix. However in [10] it is crucial to define the
type-and-effect system that associates programs to history expressions. To man-
age sequentialization we will need the concept of terminated process, indicated
with X, that cannot fire any action, still being different from δ. Indeed intu-
itively X ·a = a while we will make sure that δ ·h = δ, see [1,5]. We remark that
we will deal with X into the semantic definitions and not in the syntax. In this
we follow [1] where termination is treated as a meta-predicate over processes.
Similarly to history expressions we attach policies ψ to expressions through the
framing construct. We will define formally quantitative policies in Section 3.

We choose to stick on exponential distribution because the resulting mathe-
matical theory enjoys elegant properties, e.g. the way we use to break the race
condition. Other distributions can also be accommodated in our framework with-
out much effort, especially because we neglect here an explicit parallel operator.

Note that the stochastic choice operator enables us to cast pure probabilistic
branching in a stochastic setting. This behaviour can be simulated using stochas-
tic choice in combination with high rate events such that the time consumed for
their completion is negligible in the analysis, while providing the intended prob-
abilistic behaviour.

In the literature there are many stochastic process algebras: PEPA [23],
EMPA [14], stochastic π-calculus [30] and the stochastic version of CCS in [16],
just to cite a few. Our HEµ algebra differs from these mainly because we offer
full sequentialization, quantitative policy framing and the binary Kleene star. As
a matter of fact, HEµ with no policy framing turns out to be to be a stochastic
extension of BPA∗δ [22,7].

7

2.2 Structural equivalence

We first define a structural congruence over the set of processes H.

Definition 2.2. We define the relation ≡ as the smallest relation over H such
that:

– It is an equivalence relation and a congruence with respect to ·,+, ψ, ∗.
– It respects the following laws:

δ · h1 ≡ δ h1 + δ ≡ h1
(h1 + h2) · h3 ≡ (h1 · h3) + (h2 · h3) h1 + h2 ≡ h2 + h1

h1 · (h2 · h3) ≡ (h1 · h2) · h3 h1 + (h2 + h3) ≡ (h1 + h2) + h3

h1
∗ (h2 · h3) ≡ (h1

∗ h2) · h3

Note that the law h1 · (h2 + h3) ≡ (h1 · h2) + (h1 · h3) is missing. Indeed (a, α) ·
((b, β) + (c, γ)) 6≡ (a, α) · (b, β) + (a, α) · (c, γ) because b and c are in a race
condition within the left process.

We define now some quotient spaces with respect to the structural equivalence
that will be used in the semantics:

Definition 2.3. We define H≡ to be the set of ≡-equivalence classes of H and
[h]
≡
the equivalence class of h ∈ H. Given the minimal σ-algebra Ξ≡ generated

by H≡ (i.e. Ξ≡ = σ(H≡), the measurable space H≡ is H≡ = (H, Ξ≡). Finally,
HX indicates H∪ {X} and H≡X = (HX, Ξ

≡
X) with Ξ≡X the σ-algebra generated by

H≡ ∪ {X}.

2.3 Semantics

We give semantics of HEµ following the approach of [16,17]. We start with a
slight variant of the Markov Kernel to accommodate termination and iteration.
As a matter of fact, Markov Kernel is a labelled version of Stochastic Kernel
introduced in [15,29].

Definition 2.4. Given a measurable space M = (M,Σ) and the denumerable
set A of event names, let Σ′ = σ(Σ ∪ {X}) be the smallest σ-algebra over M ′ =
M ∪ {X} containing the sets in Σ and the singleton {X}. A Markov kernel is a
triple (A,M, θ) where θ : A → ‖M → ∆(M ′, Σ′)‖ is its transition function. A
Markov Process is a quadruple (A,M, θ,m) where m ∈M is the initial state.

To give a compact definition of semantics to HEµ, it is convenient to introduce
some auxiliary notations. Recall that it suffices to define a measure on G to
obtain its extension on σ(G), which follows by σ-additivity.

– The r-Dirac measure on N is defined: δrN (N ′) :=

{
r if N ′ = N

0 otherwise
∀N ′ ∈ G

– The null measure is defined: ω(N ′) := 0 ∀N ′ ∈ G

8

– Given an alphabet A we define the function ωA : A → ∆(H≡X) such that
ωA(x) = ω, with ω null measure on H≡X.

– Given a ∈ A the function [aκ] : A→ ∆(H≡X) is such that

[aκ](x) =

{
κ if x = a

ω otherwise

In the following we will use this operator instantiated in [aδαX], with δαX α-
Dirac delta measure on X.

– Given h ∈ H, any function in the class of h-operator �h : ∆(H≡X)A →
∆(H≡X)A is defined as follows:

[�hµ](a)(H) =
∑
k∈H

µ(a)([l]

≡
) if ∃l ∈ H.k ≡ l · h

µ(a)(X) if k ≡ h, k 6≡ δ
0 otherwise

– The binary operator ⊕ : ∆(H≡X)A×∆(H≡X)A → ∆(H≡X)A is defined as follows:

(µ⊕ µ′)(a)(H) = µ(a)(H) + µ′(a)(H)

The operators are well-defined and enjoy the following properties.

Lemma 2.1 (Properties of the operators).

1. �hω = ω
2. µ⊕ µ′ = µ′ ⊕ µ
3. (µ⊕ µ′)⊕ µ′′ = µ⊕ (µ′ ⊕ µ′′)
4. µ⊕ ωA = µ

5. �hµ = �h′µ if h ≡ h′

6. �h(µ⊕ µ′) = (�hµ)⊕ (�hµ′)
7. �(h1·h2)µ = �h2 �h1 µ

In our semantic context, as in [16], Structural Operational Semantics (SOS)
rules are not used to give a pointwise semantics (P → Q), rather they define a
function that map processes to rate distributions (the Markov kernel).

We now introduce SOS rules to map HEµ processes to functions in ∆(H≡X)A.
Indeed we are defining a relation ⊆ H × [A → ∆(H≡X)]. If (h, µ) ∈ , the
intended meaning of µ(a)(K) is the total apparent rate (sum of all rates) of an
a-transition from h to a state in K.

Definition 2.5. The relation ⊆ H × [A → ∆(H≡X)] is the smallest relation
satisfying the following rules:

(ddk)
δ ωA (act)

(a, α) [aδαX]
(cho)

h1 µ1 h2 µ2

h1 + h2 µ1 ⊕ µ2

(seq)
h1 µ

h1 · h2 �h2(µ)
(cnt)

h µ

ψ[h] µ
(star)

h1 µ1 h2 µ2

h1
∗ h2 [�(h1

∗h2)µ1]⊕ µ2

9

(seq)
(cho)

(act)
µ1 = [aδ2X

]

(a, 2) µ1

(act)
µ2 = [bδ1.5X

]

(b, 1.5) µ2

((a, 2) + (b, 1.5)) µ1 ⊕ µ2

((a, 2) + (b, 1.5)) · (c, 3) �(c,3)[µ1 ⊕ µ2]

Table 2.1: SOS derivation of ((a, 2) + (b, 1.5)) · (c, 3)

We briefly comment on the above rules. The semantics of δ is a function that
associates the null measure with any action in A; therefore δ only has transition
with rate 0, i.e. it can fire no transition. Instead, (a, α) has an a-transition to-
wards X with rate α, while the others have rate 0. Sequentialization of h1, h2
builds the associated function following a sort of continuation semantics. The
quantitative policy ψ is neglected at this semantic level, yet maintaining at a
syntactic level, so paving the way to subsequent security check. Our semantics
of the choice operator diverges from known approaches (e.g. multi transition
systems in PEPA [23], EMPA [14] and stochastic π-calculus [30]) because the
non-determinism of SOS rules is substituted by a weighted functional approach,
where single possibilities are rated and encoded in a function. This functional
approach directly associates the correct rate with racing actions, while others
need an additional normalization phase. For instance, an external observer look-
ing at the racing process (a, α) + (a, α) would see action a occurring at rate
2α, while a non-normalized transition system associates with a the rate α. Our
SOS correctly associates to this process the function µ = [aδαX]⊕ [aδαX] such that
µ(a)(X) = 2α. Back to the operational rules, the semantics of the Kleene star is
a composition of � and ⊕.

The following properties will be useful to build a Markov kernel for HEµ.

Theorem 2.1. For any h ∈ H there exists a unique µ ∈ ∆(H≡X) such that
P µ.

Example 1. Taken h = ((a, 2) + (b, 1.5)) · (c, 3), Table 2.1 shows the derivation
of h �(c,3)[µ1 ⊕ µ2], that indeed is a function. Then, we can use the classical
tabular representation of functions in Table 2.2 to represent the meaning of h.
We show entries only for non-zero values or non-null measures for singleton set
of process.

We states that our semantics is correct with respect to structural equivalence.

Theorem 2.2. If h ≡ h′ then h µ and h′ µ.

Now we use the construction given in Definition 2.4 to eventually build the
Markov Kernel for HEµ.

Theorem 2.3. Let h ∈ H, a ∈ A, H ∈ Ξ≡, H ∈ Ξ≡, ρ be a function such that
ρ(a)(h)(H) = ξ(h)(a)(H), where ξ(h) = µ whenever h µ, and H≡, Ξ≡ are
as in Definition 2.3. Then (A,H≡, ρ) is the Markov kernel associated with the
HEµ.

10

µ1 =
a

[X]≡ 2
...

...
...

...

µ2 =
b
[X]≡ 1.5
...

...
...

...

µ1 ⊕ µ2 =

a
[X]≡ 2
...

...

b
[X]≡ 1.5
...

...
...

...

�(c,3)[µ1 ⊕ µ2] =

a
[(c, 3)]≡ 2

...
...

b
[(c, 3)]≡ 1.5

...
...

...
...

The function �(c,3)[µ1 ⊕ µ2] given in the rightmost box reads: we perform action
a with rate 2 or action b with rate 1.5; in both cases we reach state (c, 3).

Table 2.2: Tabular representation of semantics

Eventually we associate a Markov Process with a HEµ h as follows:

Definition 2.6. P [[h]] is the Markov Process (A,H≡, ξ, h).

2.4 Rate Bisimulation of HEµ

The notion of behavioural equivalence is of primary importance because it high-
lights what really matters focusing objects at the right distance, and allows one
to substitute equivalent processes preserving the overall behaviour. Addition-
ally, some model checking techniques exploits behavioural equivalence to reduce
the state space dimension and this is particularly important for our purpose
verifications.

Structural equivalence is too weak. For instance consider the expressions
(a, 2α) and (a, α) + (a, α). They represents two process doing action a with the
same apparent rate. Hence from an external point of view their behaviour is
identical, but clearly (a, 2α) 6≡ (a, α) + (a, α).

In this work we will use a specific type of bisimulation, globally recognized
as the finest equivalence notion [31]. Rate bisimulation used here appears in [16]
as a generalisation of rate aware bisimulation [19] and probabilistic bisimulation
by Larsen and Skou [27].

Definition 2.7 (Rate bisimulation of HEµ). A rate bisimulation is an equiv-
alence relation R ⊆ H≡ × H≡ such that if (h1, h2) ∈ R then for all a ∈ A and
for all measurable subset H that are R-closed in Ξ≡X:

ρ(a)(h1)(H) = ρ(a)(h2)(H)

Two histories h, h′ are rate bisimilar (written h ∼ h′) iff there exist a rate
bisimulation R such that (h, h′) ∈ R, thus ∼ (bisimilarity) is the union of all
rate-bisimulations.

As expected, rate bisimilarity is compatible with structural congruence and
with the SOS semantics; also it is preserved under all the operator of HEµ,
namely it is a congruence.

11

Theorem 2.4.

– If h µ and h′ µ then h ∼ h′.
– If h ≡ h′ then h ∼ h′.
– The relation ∼ is a congruence.

3 Stochastic security policies

In this section we will introduce our notion of quantitative securities policy as
constraints on the timed behaviour of processes along with two complementary
ways to check them. Our first manner is potential : the check is made on the
CTMC associated with a HEµ process h. This is because, if h µ, the function
µ records the rates of the actions in h, and because these rates express the
probability that the actions have to fire within a certain time interval.

Since probabilities are computed on the long run, in principle we would like
to perform a security check on an always running system. The infinite behaviour
of such system is indeed represented by the long run behaviour of the associated
CTMC. Then we assume the semantics of the process h under analysis be an
irreducible CTMC with a unique steady state. The potential check of security
policies is therefore performed on steady states.

However, the duration of actions in an unlikely execution may greatly differ
from the speed expresses by their rates. An actual check is therefore performed
on the execution history (a, ta)(b, tb) . . . by a monitor, which can abort the ex-
ecution, when about to violate the security policy in hand. For this we assume
that timed histories encompass all security relevant events. We shall formalise
the above intuition below.

In the rest of this section, we assume as given a CTMC O. Recall that we
let si ∈ S be the set of states of O, R = [rij] be its rate matrix, Q = [qij] be
its infinitesimal generator matrix, π be its steady state vector and D = [dij] be
the matrix in Definition 1.3, where, for notational convenience we let D(i) = dii.
In addition I = [a, b] is an interval in R+ , when inf I = a ≤ b = sup I, with
possibly b =∞.

3.1 Abstracting executions

A CTMC implicitly represents a set of timed histories associated with the paths
we define below.

Definition 3.1 (Paths). A path σ ∈ Path over O is an infinite sequence
σ = s0

t0−→ s1
t1−→ s2 . . .

ti−→ si+1 . . . with ∀i ∈ N, si ∈ S and ti ∈ R+ such that
ri,i+1 > 0. Given a labelling function L : S × S → A, the path σ is associated
with the timed history (a0, t0), (a1, t1), . . . with ai = L(si, si+1). We write σ[i]
for si, δ(σ, i) for ti and σ@t for the state σ at time t.

We construct the following σ-algebra over paths in order to measure the
probability of sets of timed histories.

12

Definition 3.2. Let p = (s0, I0, . . . , In−1, sn) ∈ PI be a sequence of “intervals
of paths”, i.e. states and intervals, and let C(p) be the cylinder set: consisting of
all paths σ ∈ Path such that ∀i ≤ n.σ[i] = si and ∀i < n.δ(σ, i) ∈ Ii. Final let
ΣPath be the σ-algebra generated by the base of cylinder sets {C(p)}p∈PI .

Assume as given a cylinder set C(p) and let τ be the initial probability
distribution over states of the CTMC O. We measure the probability of all paths
σ ∈ C(s0, I0, . . . , In−1, sn) assuming to be in state s0 with probability τ(s0). The
sojourn time in state si is an exponentially distributed random variable with
parameter D(sk) =

∑
k∈S rik. The probability of leaving sk in the interval Ik is∫

I

D(sk) · e−D(sk)·t dt = e−D(sk)·inf(Ik) − e−D(sk)·sup(bk) with e−D(sk)·∞ = 0

and the probability of choosing as next state sk+1 is pk,k+1 =
rk,k+1

D(sk)
.

Finally, the probability to follow a path in C(s0, I0, . . . , Ik−1, sk) is induc-
tively defined on the length of cylinder as:

Pτ (C (s0)) = τ(s0)

Pτ (C (. . . , sk, Ik, sk+1)) =
rk,k+1

D(sk)
·
(
e−D(sk)·ak − e−D(sk)·bk

)
· Pτ (C (. . . , sk))

Let π be the steady state distribution of O. The value of the probability
Pπ(C(p)) is the portion of time spent by following the paths in the cylinder set
p on the long run. In the following we will use Ps to denote Pτ , with τ(s) = 1.

3.2 Actual and potential checks of quantitative policies

Here we define our stochastic security policies through a variant of Continu-
ous Stochastic Logic (CSL) [20,8], that extends CTL. Our logic, called CSLS ,
comprises path formulas and state formulas. Path formulas denote measurable
unions of cylinder sets, while state formulas are propositions, the atoms of which
constraint the given measure Pτ .

Definition 3.3. State and path formulas are defined by:

– State formulas: υ, υ′ ::= tt |ya | ¬υ | υ ∧ υ′ | υ ∨ υ′ | C≤c(ι)
– Path formulas: ι, ι′ ::= XIυ | υU Iυ′

The semantics of formulas is defined below over the given CTMC O. Path
formulas are evaluated over paths and state formulas are evaluated over states.
Informally, C≤c(ι) states that, on the long run, the portion of time spent doing
any of the paths denoted by ι is bound by p. For simplicity we only use a≤ bound,
but of course we could add at no cost any other symbol of comparison, e.g. >,≥.
Moreover, since we focus on transitions rather than on states, in CSLS we “label”
states with their outgoing transition using a class of predicates ya, a ∈ A.

The operator next XIυ describes paths that start with a transition leading
to a state where υ holds, and with duration in the interval I. The until operator
υU Iυ′ describes paths along states where υ does not hold until a transition leads
to a state where υ′ holds after a time in the interval I.

13

Definition 3.4. The semantics of state formulas is evaluated over states s ∈ S
of O; below let Prb(s, ι) = Ps ({σ | σ |= ι}):

s |= tt always true s |= υ ∧ υ′ iff s |= υ and s |= υ′

s |= ¬υ iff s 6|= υ s |= C≤c(ι) iff πs × Prb(s, ι) C p
s |=ya iff a transition from s labelled a exists

Path formulas are evaluated over the paths of O:

σ |= XIυ iff σ[1] is defined ∧ σ[1] |= υ ∧ δ(σ, 0) ∈ I
σ |= υU Iυ′ iff ∃t ∈ I.σ@t |= υ′ ∧ (∀t′ ∈ [0, t).σ@t′ |= υ)

As proved in [20], the set {σ | σ |= ι} turns out to be measurable, hence ι denotes
a measurable set of paths (this also implies that the definition of Prb is correct).

We briefly comment on the definition for C≤c(ι), recalling that ι represents a
set of paths, πs the portion of time spent in state s on the long run, while Prb(s, ι)
is the probability, once in s, of doing a path belonging to ι. Their product gives
the portion of time spent doing a path denoted by ι on the long-run.

We do not present here a procedure for operationally verifying a state for-
mula. We refer the interested reader to [8], that gives a fixpoint characterization
of Prb.

We define now quantitative policy ψ as a CSLS formula of the form

ψ = C≤c(ι) with operator C no longer occurring in ι

A policy of this form endows a path formula ι, denoting a measurable set of unde-
sired paths, wrapped up by the operator C≤c. Obviously c bounds the probability
of all paths denoted by ι.

Summing up, with the above definitions we can explain how actual and poten-
tial checks works. The actual check requires an execution monitor that watches
the computation and aborts it whenever the generated timed history is about
to fall in the set described by ι. This kind of monitoring causes a performance
degradation because it should be always enabled.

The potential control is done by checking the semantics P [[h]] of a process h,
the model, against the policies to be obeyed. We say that h respects all policies
occurring in it if and only if for all sub-expressions of the form ψi[hi].ψi[hi] |= ψ.
Needless to say, the generation of the CTMC and of its steady state can be
easily done by following the semantic definitions of Section 2.3 and by using
standard packages for numerical computations. The verification is then com-
pleted by a suitable combination of the algorithms in [8] with standard model
checking tools [25].

We now suggest a complementary usage of the two different ways of verifying
policies put forward above. The result of a potential check can be interpreted
as a bound over the probability of a monitor intervention. Indeed, suppose that
C≤c(ι) is verified true. The system will then execute an offending run, belonging
to ι, in a percentage of its time smaller than c. A user can consciously decide

14

Event Description Event Description
CIC,1 Customer insert card RO,2 Ask for offers remotely
POT,3 Print offer on the ticket RTM,2 Request MAN transaction
RTI,1.5 Request Internet transaction BIT,1 Opening Internet transaction
BMT,1 Opening MAN transaction DT,2 Executing transaction operations
ET,1 Closing transaction

Table 4.1: Events and their description.
to activate the run-time monitor, based on this information, as well as on the
risks that a possible violation may cause. If the risk is acceptable, the user can
instead deactivate the monitor, so freeing the system from the induced overhead.
Additionally, as potential analysis bounds the time spent in unsafe computations,
one can evaluate the performance and reliability of his system, by bounding the
time lost in computations that will be aborted. Finally, by decreasing the value of
the parameter c, we can determine the minimum value for C≤c to be true — and
give hints to the designer on which parts of the system need security-improving
refinements.

4 A working example

A shop in Milan, called Vestiti, is part of dress brand chain. The shop database
is mirrored in two servers: one in Milan and one in Rome. The shop is connected
to both: to the one in Milan through a private MAN and to the one in Rome
through Internet. The shop can communicate with the server in Milan with low
latency, but sometimes it could happen that the one in Rome performs better.

When an item is sold, the shop updates a single remote database, as they are
autonomously mirrored. The manager of Vestiti requires the payment system to
ask, at the moment of a payment, both servers and then to choose the fastest to
answer. Then a cash transaction occurs: the client inserts her fidelity card; the
payment system asks for offers reserved to that client; and a remainder of the
offer is printed at the top of the receipt. Then the system asks both servers for
a new transaction to update the database with the items sold. This race is won
by the first server that answers.

Assuming as given the set of actions and rates in Table 4.1, we formalize the
above as follows:

hVestiti =(
(CIC, 1)·(RO, 2)·(POT, 3)·ψ

[(
(RTM, 2)·(BMT, 1)+(RTI, 1.5)·(BIT, 1)

)
·(DT, 2)·(ET, 1)

])
∗δ

However, the CEO of the dress brand is scared by using an Internet connec-
tion, that he considers much more unreliable than their own MAN. To stay on
the safe side, the CEO asks the manager of Vestiti to enforce a security policy,
so to abort internet transaction lasting more than three seconds.

The policy ψ expressing the requirement of the manager is formally rendered
by the CSLS expression:

ψ = C≤0.01
(
¬(yBMT ∨yCIC)U [3,∞] yCIC

)

15

This policy states that we require a system not to spend more than 1%
portion of time doing an Internet transaction longer than 3 seconds. In other
words, only 1% of computational time will be spent by a run that the security
monitor will abort.

After some easy calculations, involving the computation of the steady state
distribution π of the CTMC associated with hVestiti , we obtain that

ψ[. . .] |= C≤0.01(¬(yBMT ∨yCIC)U [3,∞] yCIC) iff

πS4 × Prb(ψ[. . .],¬(yBMT ∨yCIC)U [3,∞] yCIC) ≤ 0.01

Now
Prb(ψ[. . .],¬(yBMT ∨yCIC)U [3,∞] yCIC) = 0.12 and πS4 = 0.06

the policy is respected, because 0.06× 0.12 = 0.0072 ≤ 0.01.
Then, our analysis shows that the manager of Vestiti did a good job: the

payment system of his shop always uses the fastest server available at the mo-
ment. The static check guarantees that system is quite reliable even without a
security monitor switched on, because there is a low probability of violating the
policy, i.e. 0.0072%. If the manager still feels unsecure and activates a security
monitor, we can estimate that in a period of one hour, approximately less that
30 seconds are lost serving a payment that will result in a security exception.

Conclusions

In this paper we addressed the problem of expressing and enforcing non-
functional security policies on programs. In particular we focused on quan-
titative security policies which constraint program behaviour over time. Our
approach is based on the stochastic process algebra HEµ to abstract programs
behaviour. The calculus endows the binary Kleene star iteration operator
and a full-fledged sequentialization operator. The semantics of HEµ has been
given in terms of CTMC using the approach of [17,16]. Security policies are
expressed as formulae of CSLS predicates over CTMCs. We plan to integrate
our quantitative security policies in the language-based security framework
of [12,11,10,9]. In this approach programs are typed as functions with a side
effect that abstractly describes the possible run-time executions of the program.
Security policies are properties over effects and model-checking techniques are
used to control statically whether or not the program satisfied the security
policies on demands. We plan to exploit HEµ to represent quantitative effects
of programs.

References

1. L. Aceto and M. Hennessy. Termination, deadlock and divergence. In Mathematical
Foundations of Programming Semantics, pages 301–318. Springer, 1989.

2. R.B. Ash and C. Doléans-Dade. Probability and measure theory. Academic Press, 2000.

16

3. K.B. Athreya and S.N. Lahiri. Measure theory and probability theory. Springer-Verlag
New York Inc, 2006.

4. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-time Markov
chains. ACM Transactions on Computational Logic (TOCL), 1(1):170, 2000.

5. J.C.M. Baeten. Process algebra with explicit termination. Technical report, 2000.
6. JCM Baeten and F. Corradini. Regular expressions in process algebra. In Logic in

Computer Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on,
pages 12–19, 2005.

7. J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge University Press Cam-
bridge, 1990.

8. C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Transactions on software engineering, 29(6):524–
541, 2003.

9. M. Bartoletti, P. Degano, and G.L. Ferrari. Types and effects for secure service orches-
tration. In CSFW, pages 57–69. IEEE Computer Society, 2006.

10. M. Bartoletti, P. Degano, and G.L. Ferrari. Planning and verifying service composition.
Journal of Computer Security, 17(5):799–837, 2009.

11. M. Bartoletti, P. Degano, G.L. Ferrari, and R. Zunino. Semantics-based design for secure
web services. IEEE Trans. Software Eng., 34(1):33–49, 2008.

12. M. Bartoletti, P. Degano, G.L. Ferrari, and R. Zunino. Local policies for resource us-
age analysis. ACM Transactions on Programming Languages and Systems (TOPLAS),
31(6):23, 2009.

13. JA Bergstra, A. Ponse, and S.A. Smolka. Handbook of process algebra. Elsevier Science
Ltd, 2001.

14. M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoretical Computer Science,
202(1-2):1–54, 1998.

15. R. Blute, J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov
processes. 1997.

16. Luca Cardelli and Radu Mardare. The measurable space of stochastic processes. In QEST,
pages 171–180. IEEE Computer Society, 2010.

17. Luca Cardelli and Radu Mardare. Stochastic pi-calculus revisited. Unpublished, 2010.
18. G. Clark, S. Gilmore, and J. Hillston. Specifying performance measures for PEPA. Formal

Methods for Real-Time and Probabilistic Systems, pages 211–227.
19. R. De Nicola, D. Latella, M. Loreti, and M. Massink. Rate-Based Transition Systems for

Stochastic Process Calculi. Automata, Languages and Programming, 2009.
20. J. Desharnais and P. Panangaden. Continuous stochastic logic characterizes bisimulation

of continuous-time Markov processes. Journal of Logic and Algebraic Programming, 56(1-
2), 2003.

21. W. Fokkink. Axiomatizations for the perpetual loop in process algebra. Automata, Lan-
guages and Programming, pages 571–581.

22. W. Fokkink and H. Zantema. Basic process algebra with iteration: Completeness of its
equational axioms. The Computer Journal, 37(4):259, 1994.

23. J. Hillston. A compositional approach to performance modelling. Cambridge Univ Pr,
1996.

24. J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable markov chains. Springer, 1976.
25. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model

checker. Computer Performance Evaluation: Modelling Techniques and Tools, 2002.
26. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. Formal Methods

for Performance Evaluation, pages 220–270, 2007.
27. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and

Computation, 94(1):1–28, 1991.
28. J.R. Norris. Markov chains. Cambridge Univ Pr, 1998.
29. P. Panangaden. Labelled Markov Processes. Imperial College Press, 2009.
30. C. Priami. Stochastic π-calculus. The Computer Journal, 38(7):578, 1995.
31. D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Transactions on

Programming Languages and Systems (TOPLAS), 31(4):1–41, 2009.

17

A Appendix

We collect in this appendix the proofs of our results and a detailed representation
of our working example.

A.1 Proofs

Proof of Theorem (2.1). By structural induction:

– case h = δ: Immediate by rule (ddk).
– case h = (a, α): Immediate by rule (act).
– case h = h1 · h2: Immediate by rule (seq) and by the inductive hypothesis

on h1.
– case h = h1 + h2: Immediate by rule (cho) and by the inductive hypothesis

on h1, h2.
– case h = h1

∗ h2 : Immediate by rule (star) and by the inductive hypothesis
on h1, h2.

– case h = ψ[h1]: Immediate by rule (cnt) and by the inductive hypothesis on
h1.

ut

Proof of Theorem (2.3). It suffices to show that for each h ∈ H and a ∈ A,
ρ(a)(h) is a measure in ∆(K≡X)A. The proof is straightforward by structural
induction on terms. ut

Proof of Lemma (2.1).
The only non trivial cases are 5, 6 and 7

5 �hµ = �h′µ if h ≡ h′

[�hµ](a)(K)
def
=

def
=
∑
k∈K

µ(a)([l]

≡
) if ∃l ∈ H.k ≡ l · h

µ(a)(X) if k ≡ h, k 6≡ δ
0 otherwise

=

=
∑
k∈K

µ(a)([l]

≡
) if ∃l ∈ H.k ≡ l · h′

µ(a)(X) if k ≡ h′, k 6≡ δ
0 otherwise

def
=

def
= [�h′µ](a)(K)

Since From from definitions and the fact that ≡ is a congruence follows:
k ≡ l · h⇔ k ≡ l · h′ (since l · h ≡ l · h′)
k ≡ h⇔ k ≡ h′

18

6 �h(µ⊕ µ′) = (�hµ)⊕ (�hµ′)

�h (µ⊕ µ′)(a)(K)
def
=

def
=
∑
k∈K

(µ⊕ µ′)(a)([l]

≡
) if ∃l ∈ H.k ≡ l · h

(µ⊕ µ′)(a)(X) if k ≡ h, k 6≡ δ
0 otherwise

def
=

def
=
∑
k∈K

µ(a)(l̄) + µ′(a)(l̄) if ∃l ∈ H.k ≡ l · h
µ(a)(X) + µ′(a)(X) if k ≡ h, k 6≡ δ
0 otherwise

=

=
∑
k∈K

µ(a)([l]

≡
) if ∃l ∈ H.k ≡ l · h

µ(a)(X) if k ≡ h, k 6≡ δ
0 otherwise

+
∑
k∈K

µ′(a)([l]

≡
) if ∃l ∈ H.k ≡ l · h

µ′(a)(X) if k ≡ h, k 6≡ δ
0 otherwise

def
=

def
= ((�hµ)⊕ (�hµ′))(a)(K)

7 �(h1·h2)µ = �h2
�h1

µ
Let

γ(a)(K) = [�h1
µ](a)(K)

def
=
∑
k∈K

µ(a)([l]

≡
) if ∃l ∈ H.k ≡ l · h1

µ(a)(X) if k ≡ h1, k 6≡ δ
0 otherwise

then

[�h2
γ](a)(K)

def
=
∑
k∈K

γ(a)([l]

≡
) if ∃l ∈ H.k ≡ l · h2

γ(a)(X) if k ≡ h2, k 6≡ δ
0 otherwise

while

[�(h1·h2)µ](a)(K)
def
=
∑
k∈K

µ(a)([l]

≡
) if ∃l ∈ H.k ≡ l · (h1 · h2)

µ(a)(X) if k ≡ (h1 · h2), k 6≡ δ
0 otherwise

Reasoning by case (on k) considering singleton setK = {k} we get the result.
(a) case k ≡ h′ · h2 for some h′

i. case h′ ≡ h1
h′ ≡ h1 ⇒ k ≡ h1 · h2 ⇒ (k ≡ l · h2 ⇒ l ≡ h1)
[�h2γ](a)(k) = γ(a)(h1) = µ(a)(X)

[�h1·h2
µ](a)(k) = µ(a)(X)

ii. case h′ 6≡ h1

19

A. case h′ ≡ l′ · h1 for some l′
[�h2

γ](a)(k) = γ(a)(l′ · h1) = µ(a)(l′)

h′ ≡ l′ · h1 ⇒ k ≡ (l′ · h1) · h2 ≡ l′ · (h1 · h2)
[�h1·h2

µ](a)(k) = µ(a)(l′)
B. case h′ 6≡ l′ · h1 for all l′

[�h2
γ](a)(k) = γ(a)(h′) = 0

∃l.k ≡ l · (h1 · h2)⇒ k ≡ (l · h1) · h2 ⇒ h′ ≡ l · h1 ⊥
k ≡ h1 · h2 ⇒ h′ ≡ h1 ⊥
[�h1·h2

µ](a)(k) = 0

(b) case k 6≡ h · h2 for all h

[�h2
γ](a)(k) =

{
γ(a)(X) if k ≡ h2
0 otherwise

= 0

[�h1·h2µ](a)(k) = 0

ut

Proof of Theorem (2.2).
By induction on rules of ≡ showing that property preserves from assumptions

(of existing equivalences) to conclusion (of new equivalences).

– case h1 ≡ h1: Immediate.
– case h1 ≡ h2 implies h2 ≡ h1:

by inductive hypothesis h1 µ, h2 µ.
– case h1 ≡ h2 and h2 ≡ h3 implies h1 ≡ h3:

by inductive hypothesis h1 µ, h2 µ, h3 µ.
– case h1 ≡ h′1 implies ψ[h1] ≡ ψ[h′1]:

thesis immediate by inductive hypothesis and definitions.
– case h1 ≡ h′1, h2 ≡ h′2 implies h1 ∗ h2 ≡ h′1 ∗ h′2:

thesis follows by definitions and inductive hypothesis showing that
�(h1

∗h2)µ1 ⊕ µ2 = �(h′1
∗h′2)

µ1 ⊕ µ2 by properties of operators.
– case h1 ≡ h′1, h2 ≡ h′2 implies h1 · h2 ≡ h′1 · h′2:

thesis follows by definitions and inductive hypothesis showing that �h2
µ1 =

�h′2µ1 by properties of operators.
– case h1 ≡ h′1, h2 ≡ h′2 implies h1 + h2 ≡ h′1 + h′2:

thesis follows by definitions and inductive hypothesis showing that µ1⊕µ2 =
µ1 ⊕ µ2.

– case δ · h1 ≡ δ:
knowing that δ ωA, thesis follows observing that �h1ω

A = ωA.
– case h1 + δ ≡ h1:

knowing that δ ωA and h1 µ1 thesis follows by property that shows
ωA ⊕ µ1 = µ1.

– case h1 + h2 ≡ h2 + h1:
knowing that h1 µ1, h2 µ2, result follow by commutativity of operator
⊕.

20

– case (h1 + h2) · h3 ≡ h1 · h3 + h2 · h3:
knowing that h1 µ1, h2 µ2, h3 µ3 and applying definitions we get
(h1 +h2) ·h3 �h3(µ1⊕µ2) and h1 ·h3 +h2 ·h3 �h3µ1⊕�h3µ2. Thesis
�h3(µ1 ⊕ µ2) = �h3µ1 ⊕�h3µ2 follows by properties of operators.

– case h1 · (h2 · h3) ≡ (h1 · h2) · h3:
knowing that h1 µ1, h2 µ2, h3 µ3 and applying definitions we get
h1 · (h2 · h3) �h2·h3

µ1 and (h1 · h2) · h3 �h1
�h2

µ1. Thesis �h2·h3
µ1 =

�h1
�h2

µ1 follows by properties of operator.
– case h1 + (h2 + h3) ≡ (h1 + h2) + h3:

knowing that h1 µ1, h2 µ2, h3 µ3, result follow by associativity of
operator ⊕.

– case h1 ∗ (h2 · h3) ≡ (h1
∗ h2) · h3:

knowing that h1 µ1, h2 µ2, h3 µ3 and applying definitions we get
h1
∗ (h2 ·h3) �(h1

∗(h2·h3))µ1⊕�h3µ2 and (h1
∗h2) ·h3 �h3(�(h1

∗h2)µ1⊕
µ2). Thesis follows by �(h1

∗(h2·h3))µ1 ⊕ �h3
µ2 = �(h1

∗h2)·h3
µ1 ⊕ �h3

µ2 =
�h3
�(h1

∗h2)µ1⊕�h3
µ2 = �h3

(�(h1
∗h2)µ1⊕µ2) and properties of operators.

ut

Lemma A.1. ∀h, h′, l, l′.h ∼ h′ and l ∼ l′ ⇒ h ∗ l ∼ h′ ∗ l′

Proof. Let H be the rate-bisimulation between h and h′ and let L be that between
l and l′. We define the operator • : (HX ×HX)×HX ×HX → (HX ×HX) such
that:

•(Q, d, d′) = {(z, z′) | ∃(c, c′) ∈ Q.c, c′ 6= X and z = c · d and z′ = c′ · d′}∪{(d, d′)}

We construct a new rate bisimulation S for (h ∗ l) and (h′ ∗ l′) as the smallest
equivalence relations such that:

S ⊇ H ∪ L ∪ •(H, (h ∗ l), (h′ ∗ l′))

It remains to prove that (z, z′) ∈ S ⇒ any S-closed S ∈ H and any a ∈
A ξ(z)(a)(S) = ξ(z′)(a)(S) with ξ(z) = µ, (z′) = µ′.

If (z, z′) ∈ S then we get three cases:

– if (z, z′) ∈ H result follows by the fact that S ⊇ H and so any S-closed S ∈ H
is H−closed. It follows µ(a)(S) = µ′(a)(S)

– if (z, z′) ∈ L: proof is the same.
– if (z, z′) ∈ •(H, (h ∗ l), (h′ ∗ l′)) then
• z = c · s and z′ = c′ · (h′ ∗ l′) with (c, c′) ∈ H. Using semantics rules
z �(h∗l)µ and z �(h′∗l′)µ

′. Using definition

[�(h∗l)µ](a)(S) =
∑
p∈S

µ(a)([u]

≡
) if ∃u ∈ H.p ≡ u · (h ∗ l)

µ(a)(X) if p ≡ (h ∗ l), p 6≡ δ
0 otherwise

=

=
∑
u∈U

µ(a)(u) + µ(a)(X) = µ(a)(U) + µ(a)(X)

21

for U = {u | ∃p ∈ S.p ≡ u · (h ∗ l)} and

[�(h′∗l′)µ
′](a)(S) =

=
∑
p∈S

µ′(a)([u′]

≡
) if ∃u′ ∈ H.p ≡ u′ · (h′ ∗ l′)

µ′(a)(X) if p ≡ (h′ ∗ l′), p 6≡ δ
0 otherwise

=

=
∑
u′∈U ′

µ′(a)(u′) + µ(a)(X) = µ′(a)(U ′) + µ′(a)(X)

with U ′ = {u′ | ∃p ∈ S.p ≡ u′ · (h′ ∗ l′)}. Thesis follows pointing out that
U = U ′ and U,U ′ are H−closed.

• z = (h ∗ l) and z′ = (h′ ∗ l′). It follows by operational rules that z
�(h∗l)µ⊕ ν, z′ �(h∗l)µ

′⊕ ν′ with h µ, h′ µ′, l ν, l′ ν′. Using
the same argumentation as before, as S is L-closed, ν(a)(S) = ν′(a)(S).
As already shown [�(h∗l)µ](a)(S) = [�(h′∗l′)µ

′](a)(S).
– if (z, z′) ∈ S \ (H∪L∪•(H, (h ∗ l), (h′ ∗ l′))) then it is obtained by reflexivity,

symmetry or transitivity. The first case is absurd since H∪L is an equivalence
relation on H≡. In the second case (z′, z) is in H∪L∪•(H, (h∗ l), (h′ ∗ l′)) or is
obtained by transitivity. In the case a new relation is obtained by transitivity
we get the result by transitivity of = in definition of bisimulation→.

Lemma A.2. ∀h1, h2, l.(h1 ∼ h2, k1 ≡ l · h1, k2 ≡ l · h2 ⇒ k1 ∼ k2)

Proof. By structural induction on l:

– case l = δ:
k2 ≡ k1 ≡ δ, thesis immediate by Theorem 2.4.

– case l = (a, α):
k1 ≡ (a, α)·h1, k2 ≡ (a, α)·h2. It’s easy to see that (a, α) ν with ν(b)(H) =
0 for every H and b 6= a, moreover ν(a)(k) 6= 0 iff k ≡ X.

k1 �h1ν(a)(H) =
∑
k∈H

ν(a)([l]

≡
) if ∃l ∈ H.k ≡ l · h1

ν(a)(X) if k ≡ h1, k 6≡ δ
0 otherwise

=

=
∑
k∈H

{
α if k ≡ h1
0 otherwise

and symmetrically on k2. Thesis follow by the fact that every set ∼-closed
that contain h1 contains h2 and so

∑
k∈H

{
α if k ≡ h1
0 otherwise

=
∑
k∈H

{
α if k ≡ h2
0 otherwise

22

– case l = h1 + h2:
k1 ≡ (h1 + h2) · h1 ≡ h1 · h1 + h2 · h1, k2 ≡ (h1 + h2) · h2 ≡ h1 · h2 + h2 · h2.
By inductive hypothesis we get h1 · h1 ∼ h1 · h2 and h2 · h1 ∼ h2 · h2. Thesis
follows immediately pointing out that + semantics is measures sum.

– case l = h1 · h2:
k1 ≡ h1 · (h2 · h1), k2 ≡ h1 · (h2 · h2). Thesis follows by inductive hypothesis
applied twice to obtain (h2 · h1),∼ (h2 · h2) first and then h1 · (h2 · h1) ∼
h1 · (h2 · h2).

– case l = h1 ∗ h2:
Already proved by Lemma A.1

ut

Proof of Theorem (2.4). By structural induction:

– h1 ∼ h′1 implies ψ[h1] ∼ ψ[h′1]: immediate result.
– h1 ∼ h′1, h2 ∼ h′2 implies h1 + h2 ∼ h′1 + h′2:

For arbitrary H ∈ H≡ ∼-closed assuming h1 µ1, h2 µ2, h
′
1 µ′1, h

′
2

µ′2 we get (µ1 ⊕ µ2)(a)(H) = µ1(a)(H) + µ2(a)(H). By inductive hypothe-
sis µ1(a)(H) = µ′1(a)(H) and µ2(a)(H) = µ′2(a)(H) and then µ1(a)(H) +
µ2(a)(H) = µ′1(a)(H) + µ′2(a)(H) = (µ′1 ⊕ µ′2)(a)(H).

– h1 ∼ h′1, h2 ∼ h′2 implies h1 · h2 ∼ h′1 · h′2:

Instead of considering a ∼-closed C set (reunion of more equivalence classes)
we use H as if it were a single equivalence class (set of bisimilar state).
The general result for ∼-closed sets will be obtained by σ-additivity and
C = ∪i∈IHi for generic Hi equivalence class. We assume h1 µ1, h

′
1 µ2:

[�h2
µ1](a)(H) =

∑
k∈H

µ1(a)([l]

≡
) if ∃l ∈ H.k ≡ l · h2

µ1(a)(X) if k ≡ h2, k 6≡ δ
0 otherwise

=

= µ1(a)(L) + µ1(a)(X)

[�h′2µ2](a)(H) =
∑
k∈H

µ2(a)([l′]

≡
) if ∃l′ ∈ H.k ≡ l′ · h′2

µ2(a)(X) if k ≡ h′2, k 6≡ δ
0 otherwise

=

= µ2(a)(L′) + µ2(a)(X)

with L = {l | ∃k ∈ H.k ≡ l · h2} and L′ = {l′ | ∃k ∈ H.k ≡ l′ · h′2}. Thesis
follows pointing out that L = L′ and they are ∼-closed, see Lemma A.2.

– h1 ∼ h′1, h2 ∼ h′2 implies h1 ∗ h2 ∼ h′1 ∗ h′2:
Already proved by Lemma A.1 as every bisimulation S for h1 ∗h2 and h′1 ∗h′2
the bisimilarity ∼⊃ S.

ut

23

S1 S2 S3 S4

S5 S6

S7

S8

(CIC,1) (RO,2) (POOT,3)

(RTM,2)

(RTI,1.5)

(BMT,1)

(BIT,1)

(DT,2)(ET,1)

Figure B.1: The graph representation

B Working example datas

We pictorially represent the CTMC describing the behaviour of the stochas-
tic history expression in the working example with the graph in Figure B.1.
The graph is strongly connected because of the no-exit iteration present in the
stochastic history expression hVestiti of the working example. For brevity we use
there the abbreviations in Table B.3 and Table 4.1.

The rate matrix, the Q matrix and the steady state, calculated solving πQ =
0, is:

R =

0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 2 1.5 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 2
1 0 0 0 0 0 0 0

Q =

−1 1 0 0 0 0 0 0
0 −2 2 0 0 0 0 0
0 0 −3 3 0 0 0 0
0 0 0 −3.5 2 1.5 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −2 2
1 0 0 0 0 0 0 −1

π =

0.216
0.108
0.072
0.061
0.123
0.092
0.108
0.216

Table B.2: Rate matrix, Q matrix and steady state.

We show now the calculations involved in the policy checking. To do this we
use the recursive characterization of Prb. We will present each Prb calculation

24

On the left column the name used to name states in B.1, on the right column the
stochastic history expression the name stands for.

Abbreviation Stochastic History Expression

S1

(
(CIC, 1) · (RO, 2) · (POT, 3) ·

ψ
[(
(RTM, 2) · (BMT, 1) + (RTI, 1.5) · (BIT, 1)

)
· (DT, 2) ·

(ET, 1)
])

∗ δ

S2
(RO, 2) · (POT, 3) · ψ

[(
(RTM, 2) · (BMT, 1) + (RTI, 1.5) ·

(BIT, 1)
)
· (DT, 2) · (ET, 1)

]
· S1

S3
(POT, 3) · ψ

[(
(RTM, 2) · (BMT, 1) + (RTI, 1.5) · (BIT, 1)

)
·

(DT, 2) · (ET, 1)
]
· S1

S4
(ψ
[(
(RTM, 2) · (BMT, 1) + (RTI, 1.5) · (BIT, 1)

)
· (DT, 2) ·

(ET, 1)
]
· S1

S5 (BMT, 1) · (DT, 2) · (ET, 1) · S1
S6 (BIT, 1) · (DT, 2) · (ET, 1) · S1
S7 (DT, 2) · (ET, 1) · S1
S8 (ET, 1) · S1

Table B.3: States abbreviations

by postponing some recursive calculation that turns out necessary.

Prb(S4,¬(yBMT ∨yCIC)U [3,∞] yCIC) =

=

∫ ∞
0

1.5 · e−3.5·x · Prb(S5,¬(yBMT ∨yCIC)U [3−x,∞−x] yCIC) dx+

+

∫ ∞
0

1.5 · e−3.5·x · Prb(S6,¬(yBMT ∨yCIC)U [3−x,∞−x] yCIC) dx =

=

∫ ∞
0

1.5 · e−3.5·x · Prb(S6,¬(yBMT ∨yCIC)U [3−x,∞] yCIC) dx =

=

∫ 3

0

1.5 · e−3.5·x · Prb(S6,¬(yBMT ∨yCIC)U [3−x,∞] yCIC) dx+

+

∫ ∞
3

1.5 · e−3.5·x · Prb(S6,¬(yBMT ∨yCIC)U [3−x,∞] yCIC) dx =

=

∫ 3

0

1.5 · e−3.5·x · Prb(S6,¬(yBMT ∨yCIC)U [3−x,∞] yCIC) dx+

+

∫ ∞
3

1.5 · e−3.5·x · 1 dx =

= 0.127944 + 0.0000118013 =

= 0.127956

25

and

Prb(S6,¬(yBMT ∨yCIC)U [3−x,∞] yCIC) =

=

∫ ∞
0

1 · e−1·z · Prb(S7,¬(yBMT ∨yCIC)U [3−x−z,∞−z] yCIC) dz =

=

∫ ∞
0

1 · e−1·z · Prb(S7,¬(yBMT ∨yCIC)U [3−x−z,∞] yCIC) dz =

=

∫ 3−x

0

1 · e−1·z · Prb(S7,¬(yBMT ∨yCIC)U [3−x−z,∞] yCIC) dz+

+

∫ ∞
3−x

1 · e−1·z · Prb(S7,¬(yBMT ∨yCIC)U [0,∞] yCIC) dz =

=

∫ 3−x

0

1·e−1·z·Prb(S7,¬(yBMT ∨yCIC)U [3−x−z,∞] yCIC) dz+

∫ ∞
3−x

1·e−1·z dz =

= e−6+x
(
ex + e3(5− 2x)

)

and

Prb(S5,¬(yBMT ∨yCIC)U [3−x,∞] yCIC) = 0

and

Prb(S7,¬(yBMT ∨yCIC)U [3−x−z,∞] yCIC) =

=

∫ ∞
0

2 · e−2·y · Prb(S8,¬(yBMT ∨yCIC)U [3−x−z−y,∞] yCIC) dy =

=

∫ 3−x−z

0

2 · e−2·y · Prb(S8,¬(yBMT ∨yCIC)U [3−x−z−y,∞] yCIC) dy+

+

∫ ∞
3−x−z

2 · e−2·y · Prb(S8,¬(yBMT ∨yCIC)U [0,∞] yCIC) dy =

=

∫ 3−x−z

0

2·e−2·y·Prb(S8,¬(yBMT ∨yCIC)U [3−x−z−y,∞] yCIC) dy+

∫ ∞
3−x−z

2·e−2·y dy

= 2e−6+x+z
(
e3 − ex+z

)
+ e2(−3+x+z)

26

and

Prb(S8,¬(yBMT ∨yCIC)U [3−x−z−y,∞] yCIC) =

=

∫ ∞
0

1 · e−1·h · Prb(S1,¬(yBMT ∨yCIC)U [3−x−z−y−h,∞] yCIC) dh =

=

∫ 3−x−z−y

0

1·e−1·h·Prb(S1,¬(yBMT ∨yCIC)U [3−x−z−y−h,∞] yCIC) dh+

+

∫ ∞
3−x−z−y

1 · e−1·h · Prb(S1,¬(yBMT ∨yCIC)U [0,∞] yCIC) dh =

=

∫ 3−x−z−y

0

1·e−1·h·Prb(S1,¬(yBMT ∨yCIC)U [3−x−z−y−h,∞] yCIC) dh+

∫ ∞
3−x−z−y

1·e−1·h dh =

=

∫ ∞
3−x−z−y

1 · e−1·h dh =

= e(−3+x+y+z)

and

Prb(S1,¬(yBMT ∨yCIC)U [3−x−z−y−h,∞] yCIC) = 0

	On Quantitative Security Policies

