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Abstract
The type system in the Dart programming language is delib-
erately designed to be unsound: for a number of reasons, it
may happen that a program encounters type errors at runtime
although the static type checker reports no warnings. Ac-
cording to the language designers, this ensures a pragmatic
balance between the ability to catch bugs statically and al-
lowing a flexible programming style without burdening the
programmer with a lot of spurious type warnings.

In this work, we attempt to experimentally validate these
design choices. Through an empirical evaluation based on
open source programs written in Dart totaling 2.4 M LOC,
we explore how alternative, more sound choices affect the
type warnings being produced. Our results show that some,
but not all, sources of unsoundness can be justified. In partic-
ular, we find that unsoundness caused by bivariant function
subtyping and method overriding does not seem to help pro-
grammers. Such information may be useful when designing
future versions of the language or entirely new languages.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]

Keywords type systems; language design; gradual typing

1. Introduction
One of the greatest controversies in the history of program-
ming language design has been whether or not to use static
type checking. Many mainstream languages, such as Java
and C++, are based on static type checking, but dynami-
cally typed languages, such as JavaScript and Python, have
become immensely popular and widespread. Proponents of
static typing argue that it helps detecting errors early and that
it provides a strong foundation for IDE functionality, while
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others argue that dynamic typing gives more flexibility and
increases programmer productivity [19, 33]. Within the last
decade, many proposals have been made to combine static
and dynamic typing, aiming to achieve the best of the two
worlds. A promising idea is optional typing [2], including
gradual typing [27], which allows programmers to use type
annotations selectively and thereby control which parts of a
program are type checked statically. Many language design-
ers have picked up on this idea by adding optional type anno-
tations and gradual typing to existing dynamically typed lan-
guages. Examples include TypeScript (for JavaScript) [21,
26], Hack (for PHP) [11], Reticulated Python [34], Typed
Scheme/Racket [32], and Typed Lua [17].

The Dart language supports a variant of gradual typ-
ing, not retrofitted into an existing statically or dynami-
cally typed language, but built-in from the very first version.
The Dart language and infrastructure is being developed by
Google and standardized by Ecma [7]. It was announced in
2011 and has become quite popular: Google AdWords is im-
plemented in Dart, and a search on GitHub quickly finds
millions of lines of Dart code. The Dart language designers
thoughtfully made some rather controversial choices regard-
ing the type system. One of the key principles has been that
the type system should not get in the way of the programmer,
and this has been more important than soundness [4]. The
type system in Dart has been designed to catch typical errors
at compile time, but it does not give guarantees: it is pos-
sible that a fully type annotated program passes static type
checking without any warnings, yet the program may fail
with a type error at runtime. The language designers argue
that this pragmatic choice is good both for the language im-
plementors and the programmers who use the language. As
an example, the language specification briefly motivates the
choice of unsound variance of generic types [7, Section 19]:

Experience has shown that sound type rules for gener-
ics fly in the face of programmer intuition.

A recent introductory book on Dart, written by Gilad Bracha
who is the main editor of the Dart Ecma standard specifica-
tion, contains a foreword by Erik Meijer that also advocates
for unsoundness [3]:



Type systems are often highly non-linear and after a
certain point their complexity explodes, while adding
very little value to the developer and making life
miserable for the language implementor. [. . . ] While
theoretically unsound, unsafe variance actually feels
rather natural for most developers, and I applaud
the choice the Dart designers made here. [. . . ] lan-
guages that have chosen in favor of static type safety
for generics do so at the expense of their users.

Type system unsoundness is not as outrageous as some
theoretically inclined programming language researchers
may think. Also in other languages, runtime type checks are
often used to complement corners of a static type system.
For example, in Java and C#, type casts allow the program-
mer to overrule the static type system, which may result in
runtime cast errors, and array write operations are subjected
to runtime type checks because of the design choice of al-
lowing covariant subtyping for array types. Dart takes this
further by allowing more programs to type check, aiming to
issue static type warnings only in situations that are likely to
indicate errors, at the cost of having more unsoundness.

The potential drawbacks of unsoundness are well known.
Unsoundness in the type system may cause subtle errors to
remain unnoticed until the programs are put into use, and
it makes it difficult to utilize type information for program
optimization purposes. This raises the question of whether
the advantages of the various sources of unsoundness in
Dart’s type system outweigh the drawbacks.

To our knowledge there is no empirical evidence of the
positive value of unsoundness for the programmers who use
Dart. The various sources of unsoundness are informally
justified by examples, typically showing scenarios where
sound alternatives would result in type warnings that do
not indicate actual bugs and are difficult to circumvent [4].
However, it is not clear to what extent such scenarios are
representative of realistic programs.

The Dart language designers could indeed have chosen
a “more sound” type system. In recent work, Ernst et al. [9]
have categorized the sources of Dart’s unsoundness and pre-
sented two possible alternative designs: one that is fully
sound akin to e.g. Java (with runtime errors being possi-
ble at type casts), and one that rules out all message-not-
understood errors in fully annotated code while still permit-
ting subtype-violation errors at runtime. Many other varia-
tions are of course possible. This aligns well with Bracha’s
principle of pluggable type systems [2]. Notice that subtyp-
ing is used both by the static type checker and at runtime
in checked-mode execution. Providing alternative static type
checkers gives the programmers more options, but it may
not be desirable to also change which runtime type checks
are conducted.

In this work, we attempt to provide a posteriori empirical
justification of the various sources of unsoundness in Dart’s
type system, based on a study of Dart programs available in

the ‘pub’ repository, totaling 2.4 M LOC. Empirical justifi-
cation of language design choices is unfortunately rare (we
discuss some exceptions in Section 5); it is our hope that our
study can not only explore this specific aspect of Dart but
also give inspiration to further experimental studies of lan-
guage design choices.

Hypothesis and Methodology
As observed by Ernst et al. [9], for each source of unsound-
ness in Dart’s type system, there is a natural choice for an
alternative sound design. For example, a natural sound al-
ternative to covariant generics is to use invariant generics.
(In Section 3 we recapitulate these categories of unsound-
ness and the sound alternatives.) This gives us a spectrum
between the unsound standard type system and a fully sound
alternative: for each category we may choose either the un-
sound or the sound variant. We can then test the following
main hypothesis, aiming to validate the choices made by the
designers of Dart:

For each source of unsoundness, switching to the
sound alternative would result in a significant
increase in the number of warnings raised by
the static type checker or runtime type errors in
checked-mode execution of realistic Dart programs,
and without causing a significant increase in the
number of programmer mistakes being caught by
the type checker.

Confirming this hypothesis would legitimate the Dart design
choices on an empirical basis. Conversely, in case the hy-
pothesis turns out to be rejected for one or more sources of
unsoundness, we can conclude that the programmers gain lit-
tle or no benefit from those sources of unsoundness, which
may be useful information when developing future versions
of the language, or for the design of new languages.

Testing the hypothesis is, however, not trivial. As a first
step, we implement the modifications of the type checker
and the runtime system, such that we can see how they
affect the type warnings and runtime errors on the available
collection of Dart programs. In case new warnings or errors
do appear, we conduct a manual study of a subset of them
to determine whether they typically are mistakes that the
programmer likely would want to fix or they are artifacts of
the type system, that is, situations where the program works
as intended and the programmer would likely have a struggle
to please the type system. This is admittedly a subjective
decision; for example, type warnings may appear in code
that technically works fine but maybe is questionable from a
maintainability perspective.

The focus of our study is on the type system from the
point of view of programmers who use Dart. Nevertheless,
we also find out how much effort is required to implement
the more sound variations, to see whether they indeed make
“life miserable for the language implementor” (cf. the quote
from Meijer).



Contributions
In summary, the contributions of this paper are as follows.

• We present a methodology for experimentally evaluating
the pros and cons of the various sources of unsoundness
in Dart’s type system. To our knowledge, no such eval-
uation has been done before for any language with an
(intentionally) unsound type system.

• We use Ernst et al. [9] as a starting point for classifying
the sources of unsoundness, but to better study the effect
of each of them in isolation, we suggest a more fine-
grained characterization of the sound alternatives. As part
of this effort, we also clarify the connections between
Dart and gradual typing [27, 28].

• We report on our implementation of a modified type
checker and runtime system, which provides a sound al-
ternative for each source of unsoundness. The implemen-
tation is straightforward and involves only 121 LOC in
the type checker and 42 LOC in the runtime system,
which shows that all the modifications require only lit-
tle effort for the language implementors.

• We conduct experiments on 1 888 real-world Dart pro-
grams, thereof 390 with functioning test suites, to eval-
uate how switching to the sound alternatives affects the
type checker warnings and runtime type errors. This al-
lows us to connect each new warning and error to a source
of unsoundness. In addition, we report on a preliminary
manual study of a small subset of the warnings to de-
termine whether they typically indicate mistakes that the
programmer likely would want to fix or they are artifacts
produced by a fastidious type system.

• Our main finding is that unsoundness caused by bivariant
function subtyping and method overriding is little used
by programmers. Switching to a sound alternative causes
only few more type warnings, and most of those warn-
ings are not just type system artifacts but indicate pro-
gramming mistakes.

In Section 2 we briefly explain how types work in Dart and
discuss the notion of soundness. In Section 3 we describe the
various sources of unsoundness in Dart and explore sound
alternatives. Section 4 explains our experimental setup for
testing our hypothesis and discusses our findings. Section 5
reviews related work, and Section 6 concludes.

2. Types and Dart
The Dart programming language supports both object-
oriented and functional programming [7]. We briefly sum-
marize the main aspects of its type system, which is the
subject of our study. A formalization of the core of the lan-
guage with a focus on the type system can be found in the
recent work by Ernst et al. [9].

Every runtime value is an object, and every object is an
instance of a class. This includes primitive values, functions,

and null. Type annotations are optional, which enables a
form of gradual typing [27, 28]. The default type, dynamic,
effectively disables static type checking for the variable or
field in question. The language is memory safe (unlike e.g.
C), so the runtime types of values cannot be circumvented.
Types are nominal (unlike other languages with optional
typing [34]), except function types which are structural. We
write T <: S if T is a subtype of S, and T <:> S is an
abbreviation of S <: T ∨ T <: S. Classes can be generic,
and type parameters are reified (unlike e.g. generics in Java).
Generic methods and functions are not currently part of the
Dart language specification.1

Dart distinguishes between type warnings, which are re-
ported by the static type checker, and type errors, which may
happen at runtime. A program is well typed if no warnings
are produced by the type checker. Different kinds of runtime
type errors can occur, here using the terminology of Ernst
et al. [9]: a message-not-understood (MNU) error occurs if
attempting to access a field or method that does not exist (ex-
cluding null pointer dereferences); a subtype-violation (SV)
error occurs if a value does not match the declared (i.e.,
static) type at a write operation. In this work we also con-
sider a third kind of error: a read-subtype-violation (RSV)
error occurs if the runtime type of the value being read from
a variable or field or returned from a method call is not a
subtype of the declared type. Programs can be executed in
production mode or checked mode; subtype-violation checks
are only performed in checked mode. Except for the subtype-
violation checks, type annotations have no effect at runtime;
in particular, non-well-typed programs can be executed.

Soundness of type systems To be able to explain the various
alternatives to Dart’s type system in the following section, it
is helpful to recall the terminology by Cardelli [5]. In gen-
eral, type systems are concerned with two kinds of runtime
errors: a trapped error is one that causes the computation
to “stop immediately”; an untrapped error instead can “go
unnoticed (for a while) and later cause arbitrary behavior”.
As Dart is memory safe, untrapped errors cannot cause com-
plete havoc, but they can result in MNU and SV errors later
in the execution. In Dart, MNU errors are trapped, whereas
SV errors are trapped only in checked mode but untrapped
in production mode, and RSV errors are generally untrapped
(but some are prevented by the SV checks). For example, the
following program erroneously assigns a number to a vari-
able of type String:

1 String x = 5;

2 print(x.length);

In checked mode, the error causes the program to stop in
line 1 due to the SV check, while in production mode, the
error is unnoticed until line 2 where it causes the program
to stop with an MNU error. Untrapped errors are often more
problematic than trapped ones because of the possibly large

1 https://github.com/leafpetersen/dep-generic-methods
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distance between where an error occurs and where it is de-
tected. For the remainder of this paper, we focus on checked
mode, and we shall later see examples of RSV errors. In-
terestingly, absence of SV errors does not imply absence of
RSV errors.

The purpose of a type system is to check statically
whether a given category of errors, called forbidden errors,
can occur at runtime [5]. A type system is sound with re-
spect to a given collection of forbidden errors if those errors
cannot occur in well-typed programs. In this paper, unless
otherwise noted, we select MNU and SV as the forbidden
errors, while still allowing RSV errors, null pointer errors,
type cast errors (i.e., errors triggered by the as operator), and
array-out-of-bounds errors.

Note that some of the variations of the type system that
we present involve modifying the subtyping relation, which
affects what errors are considered forbidden and therefore
also the meaning of soundness.

A false positive is a spurious warning from the type
checker about a potential forbidden error that cannot occur
at runtime. Conversely, a false negative is a runtime error
that is not reported by the type checker; such errors only oc-
cur if the type system is unsound. With our main hypothesis
in mind, we are interested not only in soundness but also
in whether or not warnings indicate bugs. We informally
distinguish between warnings that point to programmer mis-
takes, i.e. issues the programmer likely would want to fix,
and artifacts of the type system, which are warnings that
arise in program code that works as intended and where the
programmer would likely have a struggle to please the type
system if the warning should be avoided. Note that type sys-
tem artifacts do not have to be false positives, nor vice versa.

Gradually typed soundness Soundness in the sense defined
above is clearly lost when optional typing (or type dynamic)
is introduced. The literature on gradual typing provides a no-
tion of soundness that is suitable for this setting. The term
“gradual typing” is sometimes used as a synonym for “op-
tional typing” although the original work on gradual typing
had a different intention. To clarify the terminology, Siek
et al. [28] have recently proposed a set of requirements a
language should satisfy in order to be called gradually typed.
These include the following gradually typed soundness cri-
teria, here stated informally and adapted to a Dart setting:2

1. A well-typed fully annotated program (not containing
dynamic) cannot encounter MNU nor SV errors3 at run-
time (i.e., the type system is sound for fully annotated
programs).

2 MNU and RSV correspond to TypeError in Siek et al. [28], and SV
corresponds to CastError; moreover, Siek et al. express the criteria slightly
differently via a blame tracking mechanism, which Dart does not have.
3 One could choose to also treat RSV errors as forbidden, in which case
RSV should be included here alongside MNU and SV errors.

2. A well-typed program (which may contain dynamic) can-
not encounter MNU or RSV errors in checked-mode ex-
ecution (but SV errors could be ubiquitous).

Dart’s type system is unsound: there exist well-typed
programs that have MNU and SV errors. What is more,
Dart violates both the criteria for gradually typed soundness
mentioned above, for reasons explained in the following.

3. Sources of Unsoundness in Dart
Ernst et al. [9] have suggested two sound variants of the
type system, one that treats both MNU and SV as forbidden
errors, and one that forbids MNU but not SV. (The latter
variant is called message safety.) In this section we review
the sources of unsoundness, and for each of them, present a
sound alternative. Unlike Ernst et al. we want to study the
consequences of each source of unsoundness in isolation,
which in some cases requires a slightly more fine-grained
characterization of the sound alternatives.

A central part of the type system is the subtype relation,
which is used both for static type checking and for runtime
type checks. It is technically possible to use different notions
of subtyping for these two purposes, but to preserve compre-
hensibility, each variant of the type system we discuss uses
the same subtype relation for type checking and at runtime.

The sources of unsoundness can be grouped into the fol-
lowing 10 categories:

• Type dynamic

at lookups (DLOOK)
with ground types (DGND)
with generic types (DGEN)
with function types (DFUN)

• Symmetric assignability (SYA)
• Covariant generics (COGE)
• Bivariant function subtyping

at parameter types (BIFSP)
at return types (BIFSR)

• Bivariant method overriding
at parameter types (BIMOP)
at return types (BIMOR)

We next explain each of them in turn, together with the
sound alternative.

3.1 Unsoundness Caused by Optional Typing
We distinguish between four sources of unsoundness con-
cerning the optional typing mechanism (and hence the type
dynamic). In comparison, Ernst et al. [9] simply forbid
dynamic altogether, which is unnecessarily strict.

Type dynamic at lookups (DLOOK) Quoting the Dart lan-
guage specification [7, Section 19.6]: “Type dynamic has
methods for every possible identifier and arity, with every
possible combination of named parameters. These methods
all have dynamic as their return type, and their formal param-
eters all have type dynamic.” Fields are accessed via getters
and setters, which behave similarly. It should also be noted



that function calls technically involve lookups of a special
call property, so attempts to call non-function values may
result in MNU errors.

The following program, where x is declared without a
type annotation and therefore has static type dynamic, is well
typed.

3 var x = 5;

4 x.method();

This is clearly unsound as an MNU error appears at line 4.
A natural way to fix this kind of unsoundness is to change

the static type system to raise a warning on all accesses on
type dynamic for which the accessed method or field is not
declared in the Object class. (Note that we are not actually
suggesting to make this change; we merely point out what a
sound alternative would look like.)

Type dynamic with ground types (DGND) Another key prop-
erty of type dynamic is that it is a subtype of any type, so the
type system permits, for example, assignments of the form
x = e when expression e has static type dynamic irrespective
of the declared type of the variable x. For the DGND category,
we consider only the cases where the declared type of x is
a ground type (i.e., not a generic type, a type parameter, or
a function type); other cases are covered later by DGEN and
DFUN. Such assignments can obviously break soundness, as
shown by the following example.

5 var x = 5;

6 num y = x;

7 String z = x;

8 print(z + z);

9 z.substring(0, 5);

The variable x has static type dynamic. The assignments in
line 6 and 7 and the invocation in line 9 are all allowed by
the type checker. At runtime, however, there is no dynamic

type involved: the runtime type of x is int. In checked mode,
subtype checks are performed at lines 6 and 7. The first runs
fine, because int <: num, but an SV error occurs at line 7.
In production mode, no subtype checks are performed, but
an RSV error occurs at line 8 and an MNU error at line 9.
Note that the operator + is present in both the int and String

classes (operators are methods in Dart), so line 8 gives no
error and 10 is printed.

If all sources of unsoundness except DGND are fixed, then
there can be no untrapped errors in checked-mode execution
of well-typed programs, thereby fulfilling criterion 2 for
gradually typed soundness (see Section 2).

Type dynamic is assignable to any type T for two reasons:
first, because dynamic is a subtype of T , and second, because
assignability is symmetric and dynamic is also a supertype
of T . This means that fixing DGND unsoundness requires
two modifications: we simply disallow those two cases when
T is a ground type. However, to reduce overlap with DFUN

this change does not apply when assignability is used for
checking subtyping of function types.

Type dynamic with generic types (DGEN) The type dynamic

can be used as type argument in generic classes, in which
case it is reified at runtime. As an example, List<dynamic>
can appear both as a static type and as a dynamic type, unlike
dynamic, which can only be a static type. The DGEN category
of unsoundness pertains to the assignability relation allow-
ing assignments of the form x = e where the type of x is
generic and the static type of e either is dynamic or is generic
and contains dynamic at a position where the counterpart in
the type of x is non-dynamic. An example is that x has type
List<List<int>> and e has type dynamic, List<dynamic>,
or List<List<dynamic>>, which are all allowed by the type
checker. The following program demonstrates why DGEN

may lead to unsoundness.
10 List<dynamic> y = new List<dynamic>();

11 y.add(true);

12 List<int> x = y;

13 x.first.toDouble();

The program is well typed but fails with an MNU error at
line 13 because toDouble is not defined for booleans. The
subtype check at line 12 in checked mode execution does
not catch the error, because y’s runtime type List<dynamic>

is a subtype of List<int>.
This example demonstrates an RSV error: reading x.first

in line 13 yields a boolean, which does not match the de-
clared type int.

Notice that the DGEN category of unsoundness is different
from DGND. The subtype check performed at line 12 (in
checked mode) is insufficient for catching the error, making
it untrapped and unnoticed until the lookup of toDouble in
line 13 where it causes the MNU error. In contrast, DGND can
only result in trapped errors. The DGEN category therefore
violates criterion 2 for gradually typed soundness.

Our fix for this kind of unsoundness is similar to DGND,
except that we now consider the cases where T is generic
rather than ground.

Type dynamic with function types (DFUN) As for generic
types, function types can contain dynamic. The DFUN cate-
gory is exactly like DGEN except using function types instead
of generic types. For example, DFUN comprises assignments
x = e where x has type int→int and e has type dynamic

or int→dynamic. (We here ignore the parts in negative posi-
tion in the function types, so DFUN does not include the case
where e has type dynamic→int, for example.) Those cases
are allowed by the type checker but may cause unsoundness,
as the following example shows.

14 typedef int intmap(int x);

15 dynamic intmapimpl(int x) {

16 return true;

17 }

18 intmap x = intmapimpl;

19 x(5).toDouble();

The program is well typed but fails with an MNU error at
line 19 in both production mode and checked mode. The



static type of intmapimpl in line 18 is int→dynamic, and
x has type int→int. Similar to the DGEN example, the
checked-mode runtime type checks are not strong enough
to trap this mismatch early at line 18.

To fix the DFUN category of unsoundness, we modify
subtyping and assignability in the same way as for DGND

and DGEN, except this time for function subtyping.

3.2 Other Sources of Unsoundness
There are other sources of unsoundness of Dart’s type sys-
tem that are not concerned with the optional typing mech-
anism (and thereby violate criterion 1 for gradually typed
soundness, cf. Section 2).

Symmetric assignability (SYA) Dart’s type system allows an
expression of type T to be assigned to a variable, parameter,
or field of type S whenever T <:> S. In checked-mode
execution, an SV error occurs if not T <: S.

The following program shows why this is unsound.

20 int x = new Object();

21 x + 5;

The type checker raises no warnings. In checked mode, an
SV error appears at line 20. In production mode, reading x in
line 21 gives an RSV error, which is untrapped, so execution
proceeds until the lookup of +, resulting in an MNU error.

The natural fix to SYA unsoundness is unsurprising: sim-
ply restrict assignability to allow only the case where T <: S
but not the converse.

Covariant generics (COGE) Dart’s subtyping for generics
is unsound, because it allows covariance (similar to sub-
typing for arrays in Java): we have T<E> <: T<K> if
E <: K (technically, this is using a type specificity relation
rather than subtyping). Consider the following class hierar-
chy where B <: A due to the inheritance.

22 class A { }

23 class B extends A {

24 void m() {}

25 }

The following code is well typed.

26 List<A> x = new List<B>();

27 x.add(new A());

The assignment in line 26 is allowed statically because of
the covariant generics rule. In checked mode execution an
SV error appears at line 27. Notice that with checked mode,
COGE unsoundness cannot introduce untrapped errors (i.e.,
RSV errors), in contrast to DGEN and DFUN unsoundness.

The traditional sound choice for generics, if variance
annotations are not used, is to require invariance, that is,
T<E> <: T<K> if E = K [9]. To reduce the overlap with
DGEN we choose a slightly more fine-grained alternative that
also allows E = dynamic. In this way, our sound choice
for COGE will reject List<A> x = new List<B>() but allow
List<A> x = new List<dynamic>().

Function subtyping (BIFSP and BIFSR) Dart’s type rule
for function subtyping uses bivariance, both for the param-
eter types and for the return types: for functions with one
parameter, a function type T → S is a subtype of another
one T ′ → S′ if T <:> T ′ and S <:> S′ (or S = void).

Both uses of bivariance result in unsoundness. We de-
note these sources of unsoundness by BIFSP and BIFSR, re-
spectively. In the following example, the declared type of
x and the runtime type of funimpl are Object → int and
int→ Object, respectively.

28 typedef int fun(Object x);

29 Object funimpl(int x) {

30 return x.isOdd;

31 }

32 fun x = funimpl;

The program is well-typed, and the assignment in line 32
passes the subtype check in checked-mode execution. Be-
cause of BIFSR, the following invocation is well typed, but
it encounters an RSV error since the call returns a boolean
while an int is expected according to the declared type, and
shortly after it fails with an MNU error since toDouble is
not declared for booleans.

33 x(5).toDouble();

Likewise, because of BIFSP the following invocation is well
typed, but in production mode it fails with an MNU error
since isOdd is not declared for booleans, and in checked
mode it fails with an SV error since true is not an integer.

34 x(true);

The natural way to fix these kinds of unsoundness is
to require contravariant parameter types (for BIFSP) and
covariant return types (for BIFSR) in function subtyping.

Method overriding (BIMOP and BIMOR) The type rule
for overriding of methods in subclasses uses bivariance, in
the same way as function subtyping: if a method m has type
T → S in a class A and m is overridden with type T ′ → S′ in
a subclass B of A, it is required that T <:> T ′ and S <:> S′.
Since fields are implicitly accessed as getters and setters, this
applies to fields too.

In parallel with function subtyping, these two uses of
bivariance also result in unsoundness, which we denote
BIMOP and BIMOR, respectively. Examples corresponding
to lines 28–34 can therefore be made using method overrid-
ing:

35 class A {

36 int m(Object x) => 0;

37 }

38 class B extends A {

39 Object m(int x) => x.isOdd;

40 }

41 A s = new B();

42 s.m(5).toDouble();

43 s.m(true);



Category MNU SV RSV <: Type Checker Runtime
DLOOK • - - - 54 -
DGND - • - (?) 6 -
DGEN • • • ? 25 32
DFUN • • • ? 28 13
SYA - • - - 3 -
COGE - • - ? 10 8
BIFSP - • - ? 6 1
BIFSR • • • ? 8 2
BIMOP - • - - 3 -
BIMOR • • • - 3 -
total LOC 121 42

Figure 1: Sources of unsoundness. A • indicates that the
error may occur in checked-mode execution of a well-typed
program if the given source of unsoundness is not fixed. A
? indicates that subtyping is affected (and thereby also the
meaning of SV and RSV) by the suggested fix for that source
of unsoundness. The columns ‘Type Checker’ and ‘Runtime’
show the LOC in our implementation of the fix. The ‘total
LOC’ row shows the LOC involving all the fixes (some of
them overlap).

Line 42 demonstrates BIMOR, similar to line 33 for BIFSR,
and line 43 demonstrates BIMOP (assuming the preceding
line is removed), similar to line 34 for BIFSP.

Note that Ernst et al. [9] have chosen to express the type
rule for method overriding via the definition of function sub-
typing; instead, we treat them separately to allow experi-
menting with making function subtyping sound without nec-
essarily also making method overriding sound.

To fix these kinds of unsoundness, we accordingly restrict
the typing for method overriding to contravariant parameter
types (for BIMOP) and covariant return types (for BIMOR).

3.3 Discussion
Figure 1 summarizes the sources of unsoundness and shows
for each of them which errors may occur in checked-mode
execution of a well-typed program if the unsoundness is
not fixed. As RSV errors are untrapped, possibility of RSV
implies possibility of MNU and SV. The figure also shows
which fixes affect the subtyping relation (and thereby also
the meaning of SV and RSV and the runtime type checks
performed in checked-mode execution4), and the lines of
code in our implementation of the fixes in the type checker
and runtime system, respectively.

With this foundation in place, we can explore different
soundness configurations, by selecting for which categories
of unsoundness to apply the suggested fix. It follows from
Figure 1 that some configurations have particularly interest-
ing properties:

4 Fixing DGND does affect subtyping, but not runtime execution since no
object has type dynamic.

full type safety If we apply the suggested fix to all 10 cate-
gories, then the type system becomes sound (in the sense
defined in Section 2).5

message safety We obtain the notion of message safety [9],
meaning that well-typed programs cannot have MNU
errors, if we apply the fixes for DLOOK, DGEN, DFUN,
BIFSR, and BIMOR.

gradual safety We can satisfy the two criteria for gradually
typed soundness from Section 2 by applying the fixes for
all categories of unsoundness, except DGND. The result-
ing type system will hence only allow optional typing for
ground types.

RSV safety Absence of RSV errors can be guaranteed by
the type checker if we apply the fixes for (only) DGEN,
DFUN, BIFSR, and BIMOR. This is interesting because
RSV errors are untrapped, even in checked mode, and
can indirectly cause MNU and SV errors.

In the following section, we investigate experimentally to
what extent the different configurations may affect the type
warnings and errors for existing Dart programs.

4. Experiments
To test our hypothesis we have downloaded the latest ver-
sion of every library and application hosted by the Dart ‘pub’
repository,6 consisting of 2 093 projects. Unfortunately, we
have to exclude some projects, which are outdated or incom-
patible with the Dart version we use (v1.16.1), or for which
we are unable to automatically identify the files to analyze.
Our experiments are therefore performed on a total of 1 883
projects, consisting of 2.4 M LOC.

For each category of unsoundness, we can choose in our
implementation whether or not to enable the sound alterna-
tive, leading to 210 possible configurations of the type sys-
tem. Each configuration is characterized by a set of unsound-
ness categories being fixed, for example, ∅ corresponds to
the standard Dart type system, and {COGE, SYA} is the type
system where we have applied the suggested sound alterna-
tives for covariant generics and symmetric assignability. The
size of the configuration is the number of unsoundness cate-
gories in the set.

As shown in the two rightmost columns in Figure 1,
implementing the sound alternatives for all categories of
unsoundness can be accomplished with only 121 LOC in the
type checker and 42 LOC in the runtime system. Naturally,
more expressive type systems, for example with support for
generic methods, wildcards, or variance annotations will be
substantially more complex, but these numbers show that

5 This is less restrictive than the requirements in Ernst et al. [9], which
forbid all uses of dynamic. As an example, the following code is
well typed in our sound type system, even though it uses dynamic:
dynamic x = "string"; (x as String).substring(0,3)
6 https://pub.dartlang.org/ (May 2nd 2016)

https://pub.dartlang.org/


unsoundness by itself does not save any significant effort for
the language implementors.

We divide the hypothesis into three parts. First, we test
for each category of unsoundness whether or not switching
to the sound alternative results in a significant increase in the
number of warnings raised by the static type checker. Sec-
ond, we perform a preliminary qualitative study of some of
the new warnings. Third, we test how the choice of configu-
ration affects the runtime errors in checked-mode execution
of the test suites.

Due to the limited space we report only highlights of
the experiments. Our entire dataset, including details about
warnings and errors in different type system configurations,
is available online.7

4.1 Static Type Checker Warnings
We perform the following experiment. We run the static type
checker for different configurations. We first measure the
number of additional warnings per KLOC in each bench-
mark, using the ∅ configuration as baseline. Figure 2 shows
the resulting distributions for all configurations of size 1
and for RSV safety RSV = {DGEN, DFUN, BIFSR, BIMOR}
and “bivariance” BI = {BIFSP, BIFSR, BIMOP, BIMOR};
we later report on the results for configurations that involve
other combinations of categories. We also measure for each
configuration, for how many benchmarks we observe no
more than 5 new warnings, again using ∅ as baseline. (For a
typical project, 5 or fewer new warnings can hardly be called
a “significant increase”, cf. the hypothesis.) These numbers
are also shown in Figure 2, below each column.

Unsurprisingly, restricting the optional typing mecha-
nism without adding any form of type inference gives a high
number of warnings in all the benchmarks, as shown by Fig-
ure 2 for {DLOOK}, {DGND}, and {DGEN}. It is even a rec-
ommended programming style to omit type annotations at
local variables,8 which obviously results in many warnings,
especially for DLOOK and DGND. For someone with little ex-
perience with Dart, probably the most surprising numbers
are those for {DGEN}. More than 50% of the benchmarks
contain more than 21 (and in some cases beyond 100) occur-
rences of DGEN per KLOC. Section 4.2 provides a possible
explanation. The numbers for {DFUN} indicate that type
dynamic is not used as much in combination with function
types, compared to the other sources of unsoundness involv-
ing dynamic.

The numbers for {BIFSP}, {BIFSR}, {BIMOP}, and
{BIMOR} are more interesting. We see that switching to
the sound alternative for each of those categories results in
almost no new warnings, if ignoring a few outlier bench-
marks. We get only 0.3 new warnings/KLOC, and in only
1% of the benchmarks we get more than 5 new warnings.
This result seems to contradict the hypothesis, if only static

7 http://www.brics.dk/undart/
8 https://www.dartlang.org/effective-dart/usage/

warnings are considered: each of these sources of unsound-
ness can be fixed without significantly affecting the number
of warnings issued by the type checker.

The results for {SYA} and {COGE} are not conclusive.
These configurations give 2.4 and 5.5 warnings/KLOC in
average and significantly affect 9% and 18% of the bench-
marks, respectively.

Our observations described so far are for size 1 configura-
tions, however, there are cases where combinations of fixes
may lead to warnings that are not raised by the fixes in iso-
lation. In other words, there can be an interplay between the
different sources of unsoundness, as in this simple assign-
ment: List<dynamic> x = new List<int>(). This is well
typed with any of the configurations ∅, {SYA}, or {COGE},
but a warning appears with {SYA, COGE}. Our fix to COGE

unsoundness prohibits List<int> <: List<dynamic> but
still allows the converse, so the assignment is allowed un-
less SYA unsoundness is also fixed. To investigate whether
such interplay affects our conclusions, we compare the set of
warnings we get from the BI configuration with the union of
the warnings we get from each of the four singleton configu-
rations. The result is that only 1% of the warnings for BI can
be attributed to such effects. Since each of BIFSP, BIFSR,
BIMOP, and BIMOR can be fixed individually without lead-
ing to a significant increase in warnings, it is interesting to
notice that the combination BI also has this property: the
BI configuration results in more than 5 new warnings com-
pared to the standard Dart type system at only 2.8% of the
benchmarks.

Similarly, the RSV configuration is interesting for the rea-
son explained in Section 3.3. However, due to the large num-
ber of warnings that result from our fix for DGEN unsound-
ness, RSV affects many benchmarks significantly.

In summary, we see that for some sources of unsound-
ness, switching to a sound alternative can be done without
significantly affecting the number of type warnings in many
benchmarks, which means that such a modification would
not cause programmers to become overwhelmed with an-
noying warnings from the type checker. Still, two questions
remain. First, in type system configurations that do result in
a significant increase in warnings, it may be the case that the
warnings are “good” in the sense that they indicate issues in
the code the programmer likely would want to fix (we study
this in Section 4.2). Second, it is possible that type system
modifications that affect subtyping cause a low number of
warnings but still result in runtime errors that did not occur
with the original type system (see Section 4.3).

4.2 Qualitative Study of Type Warnings
As motivated above, it is relevant for our hypothesis to test
whether warnings that appear in one of the modified type
systems but not in the original one are typically “good” or
“bad” in the following sense.

http://www.brics.dk/undart/
https://www.dartlang.org/effective-dart/usage/


DLOOK

75.3%
DGND

69.8%
DGEN

52.1%
DFUN

10.1%
SYA
18%

COGE

8.6%
BIFSP
0.6%

BIFSR
0.1%

BIMOP
1.3%

BIMOR
0.4%

RSV

54.8%
BI

2.8%

Figure 2: Type checker warnings for selected configurations. Below each label we report the percentage of benchmarks affected
by that configuration. The plot represents the distribution of warnings/KLOC of each of them. The top- and lower-most ticks
of each bar represent the maximum and minimum number of warnings per KLOC of the entire dataset, outliers excluded. The
space between the two ticks is divided into four parts by three bars, called 1st, 2nd and 3rd quartile. The colored box, delimited
by the 1st and 3rd quartile, shows where 50% of warnings/KLOC lie. The 2nd quartile is the median of the dataset. The outliers
are represented by circles. For typographical reasons, we cap a few outliers, and we draw two y axes with different scale: one
for DLOOK and one for the other configurations.

• A good warning is one that indicates a programmer mis-
take that is easy to fix by only changing a few type anno-
tations. (Note that such warnings do not necessarily indi-
cate serious bugs, but possibly minor mistakes that only
affect code maintainability.)

• A bad warning is an artifact from the type system, that is,
a warning that cannot be fixed easily, but would require
either a nontrivial modification of the program code, a
more expressive type system, or changes in the standard
library.

To investigate this, we have performed a preliminary manual
study of 51 randomly selected warnings that do not appear
with the ∅ configuration, and categorized each warning into
one of the two kinds.9 Clearly, our classification is somewhat
vague and inevitably subjective, but we strive to be conser-
vative and only categorize a given warning as “good” if we
consider that programmers would likely fix the mistake but
just have never been warned about it due to the unsoundness
of the standard type system.

In order to study the correlation between specific sources
of unsoundness and the ratio between good and bad warn-
ings, we automatically categorize each warning by the mini-

9 More than 51 would obviously be better, but this kind of study is laborious.
Arguing that warnings are “good” requires us to make sure that corrected
annotations do indeed work, which is nontrivial especially for library code.

mal set of unsoundness fixes that are necessary for the warn-
ing to be exposed. We call such a minimal set an origin of
the warning. Note that a warning can have multiple origins.

Table 1 summarizes the results. The listed 11 origins
account for all the 51 warnings. For example, we find that
all 9 warnings examined from the {BIMOR} group are due
to easily fixable oversights by the programmer. A typical
example is the following field that is declared with type num,
which unsoundly overrides the type int in the super-class:

44 class Displ implements Display {

45 num get viewOffset;

46 ...

47 }

Changing the type annotation from num to int fixes the
problem (and does not introduce any new warnings).

Overall, roughly 2/3 of the warnings are categorized as
“good”. Although the numbers in this preliminary qualita-
tive study are admittedly low, they do indicate an interesting
trend: the majority of the warnings indicate issues in the code
that are easy to fix by changing a few type annotations. The
primary benefit of making those changes is that it strength-
ens the role of type annotations as documentation to the pro-
grammers. “Unsound” type annotations are less informative
and can be misleading to programmers reading the code.

Interestingly, we find that none of the 20 warnings in the
“bad” category are caused by programmers exploiting the



Origin {BIFSP} {BIFSR} {BIMOP} {BIMOR} {COGE} {SYA} {DGEN} {COGE, DGND} {COGE, BIMOP} {COGE, SYA}
good 5 1 8 9 2 1 1 0 1 1
bad 6 3 3 0 4 2 1 1 0 0

Table 1: Classification of warnings.

flexibility provided by unsoundness to do clever things: most
of them are either consequences of how the standard library
has been designed or of the lack of generic methods.

For example, list literals have type List<dynamic>, so the
assignment List<int> x = [1, 2, 3] results in a warning
with the configuration {DGEN}. Such warnings could clearly
be avoided with a slightly less naive language design, with-
out sacrificing soundness. The signature of the List.map

method is Iterable<dynamic> map(dynamic f(E e)) due
to the lack of generic methods. This has the unfortunate con-
sequence that dynamic appears frequently as type parameter,
making it practically impossible to write Dart programs that
do not use dynamic. We also see examples where generic
methods could avoid warnings related to BIFSR.

Another interesting type system artifact is that {COGE}
conflicts with asynchronous functions, as in the following
example.

48 Future<String> generate(Element element) async {

49 if (element is! LibraryElement)

50 return null;

51 ...

52 }

Asynchronous expressions and the type Future<T> are
treated specially by Dart’s type system. If an expression of
type T is returned from an asynchronous function, the type
system ascribes Future<T> as the type returned by the func-
tion body. In the example above, Future<⊥> requires COGE

unsoundness to match the generate function annotated re-
turn type, which is Future<String>, leading to a warning at
line 50 for the configuration {COGE}. However, since type
Future<T> already has a special meaning in the type system,
and futures with value null also have a special meaning, it
would be quite natural to treat this combination specially
too, without necessarily resorting to unsoundness.

The HTML API in the standard library also encourages
the use of symmetric assignability. For example, it is com-
mon to write DivElement d = new Element.tag("div")

knowing that the constructor returns an object of type
DivElement although its static return type is the super-type
Element. Note that in this case the programmer could instead
create the object by new DivElement() (or use an explicit
type cast) and thereby not rely on SYA unsoundness.

In summary, we find that a majority of the warnings in
this small qualitative study are “good”, and that the “bad”
ones are not due to programmers exploiting unsoundness
in clever ways but rather due to the design of the standard
library and the lack of generic methods.

4.3 Runtime Errors
Since some of our type system modifications affect subtyp-
ing, which is used at runtime, it is possible in some config-
urations that well-typed programs encounter more runtime
errors in the benchmark code than with the standard type
system. To investigate the extent of this situation, we have
modified the Dart Virtual Machine (VM) for the five rele-
vant sources of unsoundness according to Figure 1: DGEN,
DFUN, COGE, BIFSP, and BIFSR.

We have then collected all the functioning test files from
our benchmarks, i.e. the ones that run without any custom
setup and that pass with the standard Dart VM. (A test file
is the atomic test unit that ‘pub’ can handle, although a
single file may contains multiple test procedures.) This gives
us a total of 1 032 succeeding test files among 390 of the
benchmark projects.

Table 2 shows the number of tests that are affected by the
modified subtyping relation in various configurations. Most
importantly, we see that only 1.8% of the tests are affected
by the BI configuration (which is equivalent to {BIFSP,
BIFSR} regarding runtime behavior). Manually inspecting
the affected tests, however, reveals that all of them are arti-
facts caused by implementation choices in the VM, for ex-
ample, where field declarations are internally desugared in a
way that introduces function assignments, causing the VM
to perform needless subtype checks. Since the number of af-
fected tests is low, and the number could even be reduced
further by different VM implementation choices, this result
corroborates and completes the conclusions from the previ-
ous sections.

For DGEN, DFUN, and COGE, the numbers of affected
tests are much higher. The number for DGEN reinforces the
observation in Section 4.2 that with the current design of
lists, maps, and sets in the standard library, most such objects
inevitably hold a dynamic type argument. This also shows
that in many assignments of the kind C<T> x = y, the type
of y is C<dynamic>, which means that the T annotation is
completely superfluous from a type safety perspective.

Configuration Affected
{DGEN} 67.3% (69.2%)
{DFUN} 50.9% (50.1%)
{COGE} 81.3% (77.7%)
{BIFSP} 1.6% (3.3%)
{BIFSR} 0.7% (1.8%)

{BIFSP, BIFSR} 1.8% (4.1%)

Table 2: Percentage of tests affected in different configura-
tions (projects affected are shown in parentheses).



5. Related Work
Data-driven language design Several researchers have in
recent years pointed out the need for supplying evidence to
support language design claims. Stefik and Hanenberg [30]
“seriously question the scientific validity of any claim made
by a language designer that does not have actual data in
hand.” According to Markstrum [18], “We should be more
aware of valiant and effective efforts for supplying evidence
to support language design claims.” Murphy-Hill and Gross-
man [22] argue that controlled experiments and field stud-
ies in usage of language features rarely have influenced lan-
guage design, but they predict: “Over the next decade, lan-
guage designers will increasingly use data to drive the design
of new languages and language features.” Our work takes a
small step in this direction by providing a methodology and
results about type system unsoundness in Dart.

Empirical evaluation of type systems Empirical evalua-
tion studies of programming language design is typically
based on controlled experiments or field studies aiming to
measure programmer productivity, or code repository anal-
ysis to measure prevalence of language features. We here
focus on the literature that is concerned with type systems.
An early example is the evaluation of defect-detection capa-
bilities of inter-module type checking in C by Prechelt and
Tichy [24].

Souza and Figueiredo [29] have studied Groovy projects
to investigate how programmers use optional typing, and
Eshkevari et al. [10] have evaluated the design of Hack’s type
system by analyzing the types that occur in PHP programs.

The use of generic types in Java has been studied by
Parnin et al. [23]. Similar to our study, this was made af-
ter the language design was decided, rather than guiding the
design, and it too was based on open source programs. Con-
versely, their focus was on measuring adaption of a new lan-
guage feature, whereas our study involves a feature that has
been there since the first version of the language. Another
question is whether or not generic types increase program-
mer productivity [15].

Several controlled experiments have been conducted to
study the potential benefits of static typing, most notably by
Hanenberg et al. [8, 13, 14]. We are aware of only one such
study involving Dart: Faldborg and Nielsen [12] report on a
small user study that investigates the effect of using statically
typed APIs.

None of these studies focus on type system unsoundness.

Gradual typing and other languages Dart is sometimes
called gradually typed in the sense that it supports a grad-
ual evolution from untyped to typed code. As discussed in
Section 2, the term “gradual typing” is often associated with
soundness guarantees, which Dart obviously violate. How-
ever, in our view it is mostly the lack of contracts and blame
tracking that makes Dart fundamentally different from most
gradually typed languages. This design, combined with the

use of nominal subtyping, makes the checked-mode runtime
type checks relatively fast, unlike other languages with op-
tional typing [25, 31, 34]. It would be interesting to evaluate
empirically whether the blame tracking in other languages in
practice has advantages that justify its cost in performance.

The Dart strong mode initiative aims to provide a sound
alternative to Dart’s standard type system [20]. This goes
considerably further than the minor adjustments we have
explored in this paper, for example, also adding local type
inference and generic methods. It is unclear whether strong
mode will eventually be part of the language standard. Still,
our approach and results may be useful for qualifying the
design decisions.

TypeScript is an extension of JavaScript, with an optional
type system that is unsound by design, in many ways like
Dart. The sources of unsoundness in TypeScript have been
characterized [1], and the connections to gradual typing have
been established [25]. To our knowledge no empirical stud-
ies have been made to justify the design choices, but our
approach could in principle be applied to this language too.

Unsoundness in static analysis Deliberate unsoundness is
rare in type systems, but less so in static analyzers [16]. Re-
cently, Christakis et al. [6] have studied how unsound as-
sumptions in a static analyzer affect error detection capa-
bilities. As in our work, that study involved modifying the
analysis tool, experiments on open source projects, and use
of test suites to locate the sources and measure the conse-
quences of unsoundness.

6. Conclusion
We have presented the first empirical study of how unsound-
ness in a type system is being used in real programs. Con-
sidering the hypothesis stated in Section 1, based on our ex-
periments we conclude that some but not all sources of un-
soundness in Dart’s type system can be justified empirically.

Unless one is willing to make nontrivial extensions to the
type system (e.g. generic methods and local type inference)
it is difficult to obtain full type safety, message safety, or
even gradual safety (as defined in Section 3.3) without caus-
ing a significant increase in the number of static type warn-
ings or runtime type errors in existing Dart code.

However, we find that, especially, bivariant function sub-
typing (BIFSP and BIFSR) and method overriding (BIMOP
and BIMOR) could easily be replaced by sound alternatives
without overwhelming the programmers with annoying type
warnings or runtime errors. Moreover, our preliminary qual-
itative study of type warnings suggests that programmers
rarely exploit the flexibility provided by unsoundness (but
the standard library does take advantage of it), and that elim-
inating some of the sources of unsoundness would likely re-
sult in more “good” warnings than “bad” warnings. Finally,
our implementation of the sound alternatives shows that un-
soundness does not necessarily save any significant effort for
the language implementors.



These results demonstrate that it may be worthwhile to
explore further how alternatives to Dart’s current type sys-
tem may affect programmer productivity, for example, via
controlled experiments. Another opportunity for future work
is to focus on symmetric assignability and covariant gener-
ics, for which our results are still inconclusive. It would also
be interesting to investigate alternative designs of the stan-
dard library to reduce its dependency on type system un-
soundness.
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